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Final Report Summary

This report is aimed at developing the technology necessary to conduct
cost effective and efficient validations of the sequencing of instruction
used in the training of military occupational specialties. The overall
goal covered by this final report was to determine the congruence of psy-
chometric and instructional validation techniques for hierarchically
ordered domains. This was done through two investigations in the course
of two years. A total of 317 subjects were tested in the first project
year on two algebra skill domains constructed from the Precision Measuring
Equipment Curriculum of the Air Force Advanced Instructional System.

Latent structure techniques recently developed by Leo Goodman at the
University of Chicago were used to validate the hypothesized ordering between
domains. The first step in the analysis was to construct a set of models
representing hypotheses about the tasks under examination. The models
developed for use in the present analysis assumed three basic classes of
individuals for tasks in an hypothesized domain. These classes included
masters of the skill represented in the domain, non-masters, and individuals
in transition between non-mastery and mastery. Non-masters were character-
ized as failing all items in the domain, and masters as passing all items.
Transitional individuals were assumed to respond inconsistently in a manner
congruent with the assumption that they were still in the process of acquir-
ing the concept or rule underlying mastery of the tasks in the domain under
examination. Models asserting that tasks were in the same domain were
compared to models asserting that the tasks were hierarchically ordered.

A Texas Instrument 745 terminal purchased for the two-year project was

used in testing the extent to which the hypothesized models accurately repre-
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sented the observed performance of the subjects. The analysis revealed two
hierarchically ordered domains.

The finding of hierarchically ordered domains and the discovery that
tasks within a domain may vary in difficulty level raise questions about
gencralization during the course of learning to master domain tasks. These
questions may have far-reaching implications for training. More specifically,
it mav be possible to use information about difficulty level within a domain
to determine where to begin instruction for the domain, and how to advance
from one domain to the next. This possibility has significant implications
for training efficiency.

In the second year of research, 626 subjects from the University of
Arizona participated in an investigation designed to examine congruence of a
math hierarchy validated psychometrically (Bergan, 1980; Resnick, 1973; Wang,
1973; White, 1973) and validated instructionally (White, 1974). The hierarchy
consisted of quadratic and cubic equation tasks. Three studies comprised the
investigation. Study 1 validated a hierarchy of quadratic and cubic equation
tasks psychometrically. Studies 2 and 3 instructionally validated the domains
and prerequisite relations identified in Study 1 and examined generalization
and transfer between subordinate and superordinate skills.

The investigation incorporated latent structure techniques to validate
the hypothesized domains and ordering between domains. New models were
developed to represent response consistency in the contingency tables and to
represent different types of transitional states of learning. The models for
the second year were also able to distinguish between the prerequisite order-
ing of dcmains and ordering by difficulty within a domain.

The results of the three studies indicated a strong congruence between
hierarchies validated psychometrically and instructionally. This finding

suggests the possibility of employing the psychometric validation approach as
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a tool for gaining information about knowledge structures in a rapid manner.
This information could then be used to effectively and ecfficiently develop
tests for trainees. .

It was also discovered that positive transfer occurred between the
subordinate and superordinate skills in hierarchically ordered domains.

The findings that generalization and transfer were evident between and within
domains has important implications for training. They suggest that training
could be targeted ahead of the learner's current level.

The statistical models employed in the second year of research could be
used to develop tests that could not only sequence training content, but also
could predict generalization and transfer within training sequences. These
developments could greatly serve to increase training efficiency and reduce

training costs.

| ——in
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Rationale for and Objectives

of the Proposecd Resecarch

Since the time that Robert Gagné (1962) introduced his learning-hierarchy
model in the early 1960's, there has been a growing recognition of the use-
fulness of empirically validated hierarchical learning sequences in teacher
based, computer assisted, and computer managed training programs aimed at
promoting the acquisition of basic math and science skills or at the develop-
ment of performance capabilities related to various technical specialties pur-
sucd in military and industrial settings (Glaser, 1976; Glaser § Nitko, 1971;
Glaser § Resnick, 1972; Nitko § Hsu, 1974; Resnick, Wang & Kaplan, 1973; White,
1073, 1974). However, despite the recognized usefulness of hierarchies, vali-
dated hierarchical sequences that can be applied in training are lacking.
Morcover, there is at present no adequate, practical technology for conduct-
ing hierarchy validations. Unless such a technology is developed, the contri-
bution that validated scquences could make to training will not be realized.

The validation of a learning hierarchy requires the testing of three
hypotheses. One may be called the domain hypothesis and states that individuals
respond in the same way to all items in a given domain of items. More specifi-
cally, the hypothesis holds that masters of thc domain will tend to perform all
items in the domain correctly while non-masters will tend to perform all items
incorrectly. Some versions of the hypothesis make provisions for individuals
in transition between non-mastery and mastery. Transitional individuals are
assumed to display inconsistent performance on items in the domain. The
second is that subordinate skills in a hierarchy are ordered prerequisitely
with respect to superordinate skills (Gagné, 1977), and the third is that

prerequisite skills mdeiate transfer for superordinate skills (Gagne, 1977).
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The present project is designed to investigate rescarch questions related
to the testing of these hypotheses for the purpose of establishing guide-
lines that can be used in the development of a technology for hierarchy
validation.

The leed for Validated lticrarchies

The need for validated hierarchies stems from their recognized
potential value in training and from the fact that there are no adequately
validated hierarchies in use in training programs today. Validated
hierarchies could malie two kinds of contributions in training. One of
these relates to issues in instructional design, the other to assessment.

The Poterntial Role of Hierarchies in Instructional Design

The central advantage claimed for hierarchies in the area of instructional
design has to do with the development of instructional sequences to facili-
tate transfer of learning. In numerous places in the literature, Gagné/has
advanced the view that lower level subordinate skills which are prerequisite
to superordinate skills at higher levels in a hierarchy mediatz transfer
for the superordinate skills to which they are related (e.g., Gagnéc 1962,
19623, 1973, 1977). The implication for instructional design is that in-
structional sequences should be arranged so that prerequisite skills are
available to the trainee at the time that superordinate skills are to be
mastered (Cagneﬂ 1973).

Advocates of the learning-hierarchy view have pointed out that instruc-
tional sequences which ensure that prerequisite skills are available at the
time of learning may produce highly beneficial results (e.g., Gagne, 1973;
Glaser & Resnick, 1972). A sequence which takes into account prerequisite
skills naximizes the likelihood thut traineces will have appropriate pre-
requisite competenclies at the time they are needed for superordinate-skill

learning. On the other hand, a sequence developed without consideration for
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prerequisite relations leaves the question of whether or not trainees possess
needed prerequisite competencies to chance. The result may be that some
trainees will fail to master superordinate skills because they lack the
prerequisites to superordinate skill mastery.

The Potential Tole of Mierarchics in Assessment

The main advantage of empirically validated hierarchies with respect
to assessment relates to the problem of adapting instruction to the needs
of individual trainees. Given validated hierarchies, tests may be developed
to individualize the placement of trainees in an instructional sequence
(Glaser & Nitko, 1971; Nitko & Hsu, 1974; Resniclk, Wang, & Kaplan, 1973).
Placement tests based on validated hierarchies may be used in the initial
phases of instruction to determine the point in an instructional sequence
which will enable a trainee to encounter realily attainable goals and at
the same time to avoid activities related to objectives that have already

been mastered. 1In addition, placement tests may be used at the end of a

sequcnce to determine what has been learned and thereby to establish what
should be taught next (Nitko & Hsu, 1974).

T2 Current Lack of Validated Hierarchies

White and Gagne/(1974) have noted that although the learning-hierarchy
model has had some influence on the development of instructional materials
it has not yet had the wide application that might have been expected. One
apparent reascn for the failure of the learning-hierarchy model to have a
greater impact on training than it has had is that there are currently no
adequately validated hierarchies that could be used in training programs.

During the period since Gagne,(1962) introduced the learning-hierarchy

model, there have been several studies attempting to validate isolated

/ !
hierarchical sequences (White & Cagne, 1974). However, early investigations ‘

on hierarchies were marred by serious methodological flaws (White, 1973).
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White (1973, 1974) suggested modifications in hierarchy validation procedures
which eventuated in marked improvements in validation techniques. Despite
these advances, adequate hierarchy validation has not yet been achieved.
As indicated in the initial paragraphs of this report, adequate hierarchy
validation requires the examination of three hypotheses. Two of these

hypotheses have never been effectively tested in hierarchical research.

The domain hypothesis has never been adequately tested in hierarchy inves-

tigations. A few attempts have been made to assess the assumption that pre-
requisite skills mediate transfer for superordinate skills, but much of the
research in this area has had methodological flaws. Cotton, Gallagher, and
Marshall (1977) reviewed the literature on the transfer hypothesis and have
concluded that Gagne's transfer assumption has never been tested. Gagne's
third hypothesis, the prerequisite-skills assumption, has been subject to
intensive study (White, 1973). However, the validation procedures used to
examine the prerequisite-skills assumption are methodologically flawed and

are extremely time consuming and may not be suitable for broad scale
application.

Advances in Statistics that Make a Practical Technology for Hierarchy

Validation Possible

A major reason for the lack of progress in hierarchy validation
described above is that until recently appropriate statistical procedures
have not been available to test hypotheses germain to the development of
effective, practical procedures for validating hierarchies. A number of
procedures have recently become available which should make it possible to
conduct hierarchy validations in a practical and effective way.

New Techniques for Validating Prerequisite Relations. During recent

years Cagné's prerequisite-skills assumption has served as a focal point
for efforts to develop statistical procedures for use in hierarchy valida-
tion. White (1973) has shown that techniques used to assess prerequisite

relations by Gagne and his colleagues in early hierarchy research were
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inadequate in that they failed to provide a statistical test for prerequisite
associations which took into account errors in measurement. More recent
research on prerequisite relations using a variety of scaling techniques
including scalogram analysis (Guttman, 1944), multiple scalogram analysis
(Lingoes, 1963), and the ordering theoretic method (Bart & Airasian, 1974;
Bart & Krus, 1973) has been faulted on similar grounds. None of these
procedures provides a suitable statistical test for prerequisite relations
(Airasian, Madaus, & Woods, 1975; Dayton & Macready, 1976; White, 1974).
During recent years a number of attempts have been made to develop
procedures to test Gagné's prerequisite-skills hypothesis statistically
(¥Ymrick & Adams, Note 2; Murray, Note 3; Proctor, 1970; White & Clark,
1973). Davton and Macready (1976) have shown that each of these procedures
represents a special case of a general latent-structure model which has
the advantage of being capable of testing for prerequisite relations in
both linear and nonlinear hierarchies. Goodnman (1974) has also developed
a latent-structure approach which can be used to test for prerequisite
orderings in linear and nonlinear hierarchies,

New Techniques for Validating Positive Transfer. Although attempts to

establish statistical techniques for use in hierarchy validation have focused
mainly on Cagné's prerequisite-skills hypotheses, the need for procedures

to examine Gagné's second major hypothesis, the positive transfer assumptions,
are equally great. A recent review by Cotton, Gallagher, and Marshall (1977)
attests to this fact. As indicated above, these investigators failed to

find a single published study which provided a suitable test of Gagne's

positive transfer assumption. Bergan (1980, in press) has shown that structural

equation models based on Sewall Wright's (1921, 1960) pioneering work in

path analysis can be used to assess positive transfer in a learning hierarchy.
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Structural equation procedures based on regression analysis (Joreskog &
Sorbom, 1978) are available for use with interval scale dependent measures
(Duncan, 1975; Heise, 1975). In addition, Goodman (1972, 1973a, 1973b) has
developed structural equation techniques involving the use of log linear
models (Bishop, Fienberg, & Holland, 1975) that can be applied with dichoto-
mous and polytomous scores of the types typically used in hierarchy valida-
tion.

New Techniques for Domain Validation. Gagné (1977) assumes that the

skills in a learning hierarchy represent response classes rather than dis-
crete behavioral capabilities. For example, within the learning hierarchy
viewpoint, it is assumed that a trainee who possesses a skill such as multi-
plving two mixed numbers will be able to use that skill to solve a broad range
of similar problems.

One of the major problems in hierarchy validation is to determine whether
or not the items on a test of skill performance measure the trainee's ability
to perform the full range of behaviors included in the response class assumed
to be represented in the skill under examination. Hively (1974) uses the term
item domain to refer to the class of items associated with a given skill.
Hively, Patterson and Page (1968) developed a set of rules for generating
test items falling within various domains. Since the early work of Hively and
his associates, other investigators have elaborated on the concept of item
domain and have attempted to develop item generating procedures for various
types of domains (Shoemaker, 1975).

Although awareness of the need to determine empirically the extent to
which specific test items represent an item domain has existed for some time,
statistical procedures for empirically validating item domains associated
with different skills have been lacking. For example, White (1974) in an

article on hierarchy validation, discussed the need for determining statis-

N
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tically the extent to which different items assessed the same skill, but
was forced to conclude that there were no available statistical procedures
for making such a determination,

The Goodman (1974) and Dayton and Macready (1976) latent structure
procedures are suitable for use in empirically validating an item domain.
For instance, to test the hypothesis that a set of items belong within the
same domain using the Goodman latent structure technique, one could hypothe-
size a model composed of three latent classes. One of these would represent
those learners who had acquired the skill being assessed by the items in the
domain under investigation. Trainees in this group would be expected to pass
all domain items presented to them. The second type would represent learners
who had not acquired the skill in question. Trainces in this group would be
expected to fail all domain items which they encountered. The third class
would be composed of individuals in transition between non-mastery and mastery.
Either the chi-square goodness-of-fit or likelihood-ratio statistic can be
used to test the fit of a model of this type to a set of data collected on
item performance in the domain targeted for study.

A Structural Approach to Hierarchy Validation. The present research

combines use of the Goodman (1974) latent structure techniques with structural
equation procedures (Goodman, 1973a) in what may be termed a structural approach
tc hierarchy validation. The research examines the validity of item domains

in a hierarchy and addresses both Gagné's prerequisite ordering and positive
transfer hypotheses as these assumptions relate to the task of developing
practical procedures that can be applied in hierarchy validation in domain-
referenced assessment and training design. The hierarchical relations

selected for examination involve basic algebra skills included in military
training. The specific skills targeted for study were designed to be con-

gruent with the Precision Measuring Equipment Curriculum of the Advanced
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Instructional system (AIS), an individualized training program operated by
the Airforce at Lowrey Airforce Base. Analysis of these skills in the
present project not only affords general guidelines for the validation of
military training sequences, but also provides direct information that could
be used to improve the efficiency and effectiveness of military training
involving basic algebra skills.

Hierarchv Research Needs

Although adequate statistical procedures for examining hierarchical
relations are now available, information is lacking on how to go about the
validation process. Three kinds of research needs must be met before it
will be possible to determine the most efficacious procedures for validating
hierarchical associations. One of these involves the issue of how skills
should be measured in validating the prerequisite- ordering hypothesis. The
second has to do with skill measurement in validating the positive-transfer
hypothesis, and the third deals with domain validation in hierarchical
sequences.

Needs Related to Prerequisite-Skills Validation. One of the initial

steps in hierarchy validation is to test for hypothesized prerequisite
relations in the hierarchy under examination. Two strategies have been
suggested for accomplishing this task, Research is needed to determine
whether or not these two procedures yield different results.

One of the strategies used in prerequisite-skills validation is the
psychonetric approach (Resnick, 1973; Wang, 1973). In this approach,
trainees are tested on skills under examination in a hierarchy, and a statis-
tical procedure is applied to determine the existance of prerequisite de-
pendencies., Some years ago White (1973) criticized the psychometric approach
on the grounds that it does not control for random forgetting. White took
the position that skills in a hierarchy may be forgotten in a different order

than the order in which they are learned.. In accordance with this position,




1

-9~

White (1974) argues that validation of the prercquisite-skills hypothesis
requires a validation procedure in which learners who do not initially
possess the skills in a hierarchy are taught the skills. MHe further suggested
that testing for skill acquisition should be conducted during the course of
learning rather than when instruction has been completed.

In support of the assumption of random forgetting, White cited only one
study, an early investigation by Gagneland Bassler (1963). There are a
number of reasons why the Gagné’and Bassler study does not provide convincing
evidence for the random forgetting assumption. First, adequate statistical
procedures for testing the prerequisite skills hypothesis were unavailable
at the tine of the Cagné'and Bassler investigation. Thus, it is not certain
that all of the prerequisite relations that were assumed to be shown by the
data actually did exist (White, 1976), Second, at the time of the investiga-
tion, there were no statistical techniques to assess the extent to which
observed differences between learning and retention reflected measurement
error as opposed to forgetting. Finally, the retention test which Gagne/and
Basslar used involved items which were different from the tiems used to
assess learning. Thus, what Gagne and Bassler called a retention test could
also be described as a test of generalization.

Recognition of the lack of convincing evidence provided by the Gagné
and Bassler study has recently led White (1976) to suggest that the psycho-
metric procedure ought to be reconsidered for use in hierarchy validation.
The widespread application of hierarchical sequences in military training
will require the validation of vast numbers of hierarchies. The psychometric
approach to testing the prerequisite~skills hypothesis is much more efficient
than the instructional strategy advocated by White. If it were possible to
use the psychometric approach in the validation process and attain accurate
results, a huge savings in time and personnel would be realized . 1In view

of the superior efficiency of the psychometric approach and the lack of
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convincing evidence contra-indicating the use of the approach, research
to assess the efficacy of the psychometric technique is clearly warranted.
In this regard, there is a need to determine the extent to which hierarchical
models validated under White's instructional strategy match models validated
psychometrically. The present project is designed to meet this research
need.

As indicated in the discussion of the Gagne'and Bassler study, the
extent to which skills are retained in the order in which they are learned
has implications with respect to the utility of the psychometric approach.
In order to establish fully the utility of the psychometric validation
strategy there is a need for research on the question of whether or not
skills are forgotten in a different order than the order in which they are
learned. The present project addresses this research need.

Needs Related to Positive Transfer Validation. As indicated above

published studies assessing Gagné's positive transfer hypothesis are lacking.
One possible reason for this lack is that procedures advocated for testing
positive transfer are difficult and time consuming to implement. Many
investigators, particularly those studying complex hierarchies involving
many connections have dealt with the issue of transfer by ignoring it and
focusing instead on the validation of prerequisite relations (White &

Gagne', 1974).

Validation of Gagné's positive transfer hypothesis has generally been
conceptualized within a transfer-of-training paradigm. White & Gagne’
(1974) suggest a validation strategy which illustrates this fact. The
White & Gagné’approach involves the following steps: First, choose as many

prerequisite relations in the hierarchy under consideration as can be examined
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within existing constraints on time and resources. Second, for each con-
nection to be studied, identify groups of learners who possess all relevant
prerequisite skills, but who lack the specific prerequisite and superordinate
skills targeted for study. Third, conduct a standard transfer-of-training
experiment in which half of the learners receive training on the superordinate
skill. Positive transfer is indicated if learners receiving prerequisite
skill training perform significantly better on the superordinate skill train-
ing task than learners who do not receive prerequisite skill instruction.

As indicated above, Bergan (1980, in press) has shown that Gagheﬂs positive
transfer hypothesis can be tested using structural equation models. Within
a structural equation approach, direct and indirect effects among a set of
variables can be examined in the absence of an experiment involving random
assignment of individuals to treatment conditions (Duncan, 1975; Goodman,
1972; Heise, 1975). For example, in the case of interval scale data, the
direct effects of one variable on another can be assessed using ordinary
least squares regression techniques (Duncan, 1975). The magnitude of the
direct effect of the first variable on the second is given by a structural
coefficient which in ordinary least squares regression analysis is the
regression coefficient in the regression equation.

A structural approach to testing Gagné's positive transfer hypothesis
is potentially more efficient than the procedure suggested by White and
Cagné (1974). The increased efficiency derives from the fact that structural
equations can be usgd with the same data collection procedures as those
employed in prerequisite skills validation. Thus, for example, structural
equations can be used to examine positive transfer using White's (1974)
instructional procedure for prerequisite skills validation. White's

instructional procedure requires less time and is more practical to implement
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than the White & Gagné'(197A) transfer paradigm in that it necessitates
only one group of learners who are taught all skills in a linear sequence
whereas many groups learning different skills are needed to implement the
White and Gagnd transfer procedure.

Structural equations can be used to achicve an even greater gain in
efficiency than that associated with the use of the White instructional
technique if they are coupled in positive transfer validation with the
poychometric validation procedure. The psychometric procedure is, of
course, much more efficient than the White and Gagne’approach in that all
that is required to implement the technique is to test a group of trainees.

To apply structural equations to test the assumption that prerequisite
skills mediate transfer for superordinate skills, prerequisite and superor-
dinate skills must first be identified. This can be accomplished using
prerequisite skills validation procedures discussed above. After prerequisite
and superordinate skills have been determined, a structural model comprised
of equations expressing hypothesized effects of previously validated pre~
requisite skills on superordinate skills can be constructed. Data from
either the White instructional procedure of the psychometric procedure can
then be used in testing model-data fit.

It is possible that structural equations used with the psychometric
procedure would not yield the same results as would be attained using White's
instructional paradigm. If this were to occur, it could be argued that
White's paradigm provided a more valid demonstration of transfer than a
structural equation approach using psychometric validation procedures in
that the White paradigm involves learning, whereas the psychometric approach
does not. However, if psychometric procedures could be assumed to yield the

same transfer relations as identified through the White paradigm, then a

Y
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substantial gain in efficiency could be attained in the validation process.
Research 1is needed to determine the extent to which structural equation
techniques coupled with instructional or psychometric validation procedures
reveal the same transfer relations. The present project is designed to meet

this research nved.

Needs Relating to Domain Validation. The validation of item domains
is an essential precursor to adequate examination of the other major
hvpothesis involved in hierarchy validation. Without domain validation, it
is impossible to determine the extent to which test items reflect the response
classes that thev are assumed to represent. TIn the absence of domain valida-
tion, failure to confirm e¢ither prerequisite skills or positive transfer
hypotheses could be attributed to the possibility that the specific items
used in validation did not adequately represent hypothesized classes for
the skills under investigation.

The empirical determination of relations amongz tasks within domains
requires the construction of models to represent item domains. A number of
models assume some kind of equivalence relation among tasks in an item domain.
That is, they all assume that tasks will tend to be responded to in the same
way by at least some groups of individuals. For example, Dayton and Macready
(1976) have conceptualized item domains in terms of models that assume a
rastery class composed of individuals who tend to perform all domain tasks
correctly and a non-mastery class comprised of individuals who tend to fail
all tasks in the domain. Ry contrast, Bergan, Cancelli and Luiten (1980)
have described models based on Goodman's (1975) work in response scaling that
agssume three classes of individuals in a homogeneous domain, non-masters,
masters, and what Goodman (1975) calls unscalable individuals. Masters are

assumed to perform all tasks in the domain correctly while non-masters are
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assumed to fail all tasks. Individuals in the unscalable category tend to
manifest responses inconsistent with non-mastery or mastery and may be
thought of as being in a transition state between non-mastery and mastery.

Varying assumptions may be made about task difficulty (i.e., the proba-
bility of accurate performance) within mastery, non-mastery, or transitional
classes. llore specifically, it may be assumed that tasl difficulty varies
vithin classes or that it is equal across tasks within classes. For example,
consider two algebra tasks shoun empirically to belong in a domain characterized
by problems in which a common term, say x, has to be factored from an ex-
pression such as (xa + xb). Suppose that the tasks were similar in all
significant respects except that one necessitated three steps to achieve
a solution and the other required only two steps. Suppose further that a
model including masters, non-masters, and transitional individuals were used
to describe relations awmong the tasks in this domain. Under this kind of
model, masters would be assumed to perform all tasks correctly. For masters,
the two tasks would be equally difficult in that the same proportion of
individuals (i.e., all individuals) would display mastery of eéch task.

Since non-masters would be assumed to fail all tasks, the tasks would also

be equally difficult for them. By contrast, the tasks could vary in diffi-
culty for transitional individuals. It would be reasonable to assume that

the problem requiring three steps for solution would be more difficult

than the problem requiring two steps for transitional individuals,

The possibility of within domain variations in task difficulty suggests
that in a certain sensec there may be sequential ordering within domains as
well as between hierarchically related domains. As already indicated,
the tasks within a domain are assumed to be equivalent, but equivalence may
not always imply complete symmetry, Tasks that vary in difficulty for a
given class such as that of transitional individuals may be thought of as
being asymmetrically equivalent. Sets of asymmetrically equivalent tasks

may be ordered by difficulty to form a sequence within a domain. Nothine i
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known about the conditions that may produce asymmetrical equivalence relations
within a domain. The present report examines the hypothesis that tasks within
domains comprised of algebra problems will form asymmetrical equivalence
relations congruent with variations in the number of steps required to achieve
problem solution.

The presence of an ordered relation between tasks provides one criterion
that can be used to establish boundaries between domains. The concept of

domain boundaries is, of course, essential in delimiting the content of a

domain. Nonetheless, it is not necessary to think of boundaries as imper- .

meable walls. Domains may include large numbers of tasks, and it is quite
possible that some inter-domain task comparisons may suggest boundary per-—
meability. Tor example, suppose that a group of item sets were used to
assess performance on three academic tasks, A, B, and C. Assume that task A
was shown to be asymmetrically equivalent to task B and that task B was found
to be asymmetrically equivalent to task C. In addition, suppose that an
ordered relation were observed in which A was found to be subordinate to C.
In a case such as this, A and € would be in separate domains, but B would

be in both the A domain and the C domain. Thus, the boundary between the A
domain and the C domain would be permeable. The present report examines the
possibility of permeability in domair. boundaries. In this connection it is
hypothesized that if permeability does exist, it will occur between tasks

at the higher levels of a subordinate domain and the lower levels of the

related superordinate domain.

-
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First Year Research

This section of the renort details studies conducted during the first
project year. These involved the psychometric validation of algebra prob-
lem solving domains (Task 1) and the psychometric validation of the hierar-
chical ordering of dorains (Task 2).

Objectrives For The First Project Year

Objectives for the first year of the project focused on the attainment
of Task 1 objectives. These include both outcome and enabling objectives.

Outcome Objective. To validate psychometrically the domains and the

ordering of item domains for algebra tests selected from an examination of
the Precision !leasuring Zquipment Curriculum.

Enabling Objectives.

a. to construct and write item domains for each hypothesized domain.

b. To task analyze algebra skills from psychometrically validated
domains selected from the Precision Measuring Zquipment Curriculum.

c¢. To construct a domain referenced test of items randomly selected
from eacir domain.

d. To adninister the test to approximately 2090 sﬁbjects.

e. To scére responses.

f. To construct and test latent class models to determine the extent
to which hypothesized models fit (i.e., accurately represent)
observed test performance.

Method

Subjects. The subjects were 317 volunteers from a high school and

university in the Southwest selected to represent a wide range of skill levels

in solving algebra problems. Subjects ranged from high school freshmen taking
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a first course in basic mathematics to university students, a number of whom
had had college math courses. There were approximately equal numbers of males
and females representing a broad spectrum of ethnic backgrounds. Approximately
887 were Anglo, 8% were Mexican-American, and 4% were divided among Blacks,
native American Indians, and Asians. More subjects were used than the 200
originally intended for the study so that the full range of algebra skills
likely to be proécnt in military trainees would be represented.

Tasks. A group of algebra tasks hypothesized to form an ordered set of
behavioral domains was selected for use in conducting domain structure analysis.
Algebra was chosen because it is a highly structured content area. The
structured nature of the discipline facilitated the formulation of hypothesized

domains and domain orderings.

An adaptation of facet analysis (Berl, 1973; !illman, 1974) was used in
formulating hypothesized domains an? domain orderings. TFacets were defined

1

classes of behavioral operations involved in perfornming algebra tas's.

i

Taree facets were identified for this study: transposition of terms, applica-
tion of the distributive property, and factoring. Each facet was hypothesized
to represcat a houogeneous itenm domain,

Problems within each domain varied in terms of the numher of steps
required to achieve problem solution. For example, some problems could be
solved in a single step such as multiplying both sides of an equation by one

term or expression. Other problems required as many as five steps for solu-~

tion. It was assumed that item sets within each domain would form asymmetrical

equivalence relations sequenced in accordance with the number of steps neces-
sary for problem solution,

The hypothesized domains identified in the study do not represent inde-~
pendent dimensions. Tor example, it is impossible to solve factoring problems

without transposing terms. The inclusion of operations defining one domain
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in problews reflecting another domain suggested an ordering of the domains
congruent wvith Gagng's (1962, 1977) view that componeat tasls form an ordered
sequence. An examination of the hypothesized domains to identify components
~cated that the term-transposition domain would be subordinate to both
the distridutive property and factoring domualins.

Problems illustrating the hypothesized domains are shown in Table 1 in

Appendix A.

~,

The first domain included problems requiring the transposition of terms
from one side of an algebra equation to the other. Transposition was effected
by one or more arithmetic operations (e.g., wultiplication or subtraction).
For instance, the first problem shown in Table 1 for this domain required
transpositing the term A to the right side of the equation by multiplying
both sides of the equation by A. The second domain involved applcations of
the distributive property in which a single term had to be multiplied with
each of two terms in an expressicn. The third domain required factoring
a comxmon term from an expression. For example, 'in the problems in Table 1,

X nust be factored from expressions including the terms N and R. Factoring is
regarded in algebra texts as an application of the distributive property.
This application involves a reversal of the multiplication opzsrations carried
out in using the distributive property.

Each of the three hypothesized domains involved problems xrepresenting
an ordered set of elements. Ordering was based on the number of steps required
for problem solution. For example, the first problem shown in Table 1 for
the term transposition domain required only one step to achieve problem

solution. By contrast, the second problem required two steps.

Variations in number of required steps were by necessity different for

different domains. For example, the simplest factoring problem required two
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steps for solution. First a common term X had to be factored from an expres-
sion. Then the expression had to be moved to the right side of the equation.
The term transposition domain contained two step categories: one-step problems
and two-step problems. The distributive property domain contained three
step classes: three-step problems, four~step problems, and five-step problems.
The factoring domain contained the largest number of step categories. Factor-
ing problems ranged from two steps to five steps.

Test Construction and Scoring. Following the facet analysis, item forms

and item form shells (Hively, Maxwell, Rabell, Sension & Lundin, 1973) repre-
senting each of the domains and step categories within domains were constructed.
The item forms provided descriptions of the classes of problems tc be solved,
stimulus and response characteristics of those classes, and cell matrices
indicating class variations. The item forn shells indicated materials, direc-
tions, scoring specifications, and replacement rules for generating items.
The item form approach was used because it makes it possible to represent the
ponulation of problems in a domain in a precise fashion.

Test items were constructed to correspond to item form specifications.
Two items representing ideatical problems were prepared for each type of
algebra task included in the study. These items varied only in the specific
letters used to revnresent equation terms. This made it possible to reflect
variations in response consistency in the models used to assess domain struc-
ture.

Each pair of terms representing a task was scored 1, 2, or 3. A1l
indicated that neither of the two items was answered correctly. A 2 indicated
that one of the two item pairs wvas answered correctly, and a 3 indicated that

both items were responded to correctly.
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Procedures. Testing was carried out in groups of about thirty. The
participants were told that the purpose of the study was to determine how
people solved algebra problems. After the test booklets were passed out,
the experimenter gave instructions for responding to the test. Trainees
were instructed to solve the algebra problems presented and to write their
solutions in the test booklets provided. Trainees were instructed to attempt
all problems and to provide solutions even in cases in which they were unsure
of the answers. Following the instructions the trainees were told to begin
the test and were assured that they would have as much time as necessary to
complete the problems. During the course of the testing, the experimenter
and an assistant monitored each subject's p:rformance to insure that the task
was understood. The vast majority of the subjects comprehended what they were
to do on the basis of the initial instruction. However, in one or two cases
there were some questions. When this happened, the experimenter simply re-
peated the instructions for the individual having difficulty. 1In all cases
the repeated instruction was sufficient to enable the individual to respond
to the questions.

The Latent Class Approach

Latent class models {(Goodman, 1974) were used to assess equivalence and
ordered relations among the algebra tasks examined in the study. Latent class
models explain association in a contingency table in terms of a latent (i.e.,
unobserved) variable or set of latent variables each of which includes a set
of latent classes. For example, in the present research latent class models
were constructed to reflect variations in task mastery. The latent variable
in this case was mastery variations. This variable included different latent
classes, such as a mastery class and a non-mastery class. A latent class model
can be used to generate maximum likelihood estimates of expected cell frequen-

cies which indicate expected response patterns under the assumption that the
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model being examined is true. A brief description of latent class techniques
is provided in Appendix C.

Latent class models are tested by assessing the correspondence between
observed cell frequencies and estimates of expected cell frequencies using the
chi-squared statistic., When the correspondence between observed and expected
frequencies is close, the value of X2 will be low and the model being tested
can be said to provide an adequate fit for the data. Clifford Clogg (Note 3)
has developed a computer program that carries out the iterative process used
to generate maximum likelihood estimates of expected cell frequencies and that
conputes the X2 value to test the fit of a model to a data set. Clogg's pro-
gram was used in the present investigation.

Models Tested '

The latent class models initially designed for the present project were
intended to distinguish between ordered and equivalence relations among
algebra tasks. For reasons to be discussed, these models were significantly
modified for the second year research. To understand why the models were de-
signed as they were, it is necessary to understand model distinctions involving
the ordering and equivalence of tasks. Consider Table 2 in Appendix A, cross-
classifying performance on two items. Thus, a subject's score for each task
may fall into one of three categories, zero right, one right, or two right.

These categories can be designated by the numbers 1, 2, and 3 respectively.

In a tabie of this kind, a score of 1 on each task would suggest non-~
mastery. This response pattern would be reflected in the 11 cell in the
table. A score of 3 on each task would suggest mastery. This pattern is re-
flected in the 33 cell. A score of 3 on task A and 1 on task B would indicate

mastery of task A without evidence of mastery of task B. Scores of 2 would

reveal inconsistent performance characteristic of transition between non-mastery

and mastery. Since the items for each task are identical, scores of 2 should

reflect errors which ought to occur at a relatively low frequency.
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Given an ordered relation betueen tasks A and B, the number of responses
in the 31 cell should be significantly greater than the number in the 32
cell. Under the assumption of ordering, a build-up would be expected in the
31 cell indicating that a significant number of subjects had mastered A without
having bezun to master B. The 32 cell would be expected to have relatively B
few responses because the 2 category represents response inconsisteancy for
task B.

If the tasks were equivalent, the number of individuals in both the 31
and 32 cells would be small since both these cells would reflect response
inconsistency. The relation between the 31 and 32 cells would not be crucizal
so long as the probability for the 31 cell was not larger than the probability
for the 32 cell. Two relations between the 31 and 32 cells could occur
without contraindicating the equivalence assumption. Either the cells could be
equiprobable or there might be a significantiy greater number of individuals
in the 32 cell than in the 31 cell.

As this discussion shows, a critical issue in determining whether two
tasks form an ordered or equivalence relation is that of determining whether
the hypothesis that the occurrence of responses in the 31 and 32 cells is
equiprobable is supported by the data. If this hypothesis is xejected, it is
necessary to dccermine.whether the probability of a response in the 31 cell
is greater than the probability of a response in the 32 cell for masters of
task A. If this turns out to be the case, a model describing an ordered
relation between the tasks may be considered, If the probability for the 31
cell is not greater than the probability for the 32 cell, an equivalence model
may be suggested to represent the data.

Eight latent class models were exanined in the study. The models are

described in the following paragraphs and are displayed visually in Table 3 (Arp.A)-

The E's and curvad lines in the visual display indicate cells constrained to




-23~

be equiprobable under a given model. The I's indicate cells for which the
assumption is made that the probability of a given response level on tasl A is
independent of the probability of any particular response level on task B,
The X's indicate response patterns associated with specific latent classes.
For example, the X in the 11 cell of H

1 indicates the association of the 11

response pattern with the non-mastery latent class.

The Indepeniznce-Equiprobability liodel. The first model, designated H

o’
asserts independence between task pairs and equiprobability between categories

1 and 2 for the task assumed to be the least difficult in the task pair. This
model served as a standard against which to compare the other models tested.
The equiprobability provision was included to make the model congruent with
rodels being exanined., As mentioned earlier, the central criterion for
distinguishing betwveen ordered and equivalence relations is one asserting
equiproubability between certain task categories. The equiprobability provision
was included in rodel HO, as well as some of the other models examined, to
provide a basis for -distinguishing between ordered and equivalence relations.
If there had been any instances in vhich model Ho provided an adequate descrip-
tion of tasks in the domaln under examination, the hypothesis that the tasks

were not related would have been supported.

The lModel of Symmetry. Model Hl asserted symmetrical equivalence between

tasks. Model Hl included 6 latent classes: a non-mastery class, a partial
mastery class, a mastery class, and 3 transition classes reflecting symmetrical
inaccuracies in responding. The 3 classes assuming inaccurate responding

each asserted equiprobability for one pair of cells in the table cross-classi-

fying the tasks under examination. For example, one of these classes asserted
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that the probability of the 12 cell would be equal to the probability of the
21 cell. The second asserted that the probability of the 13 cell would be
equal to the probability of the 31 cell, and the third assumed that the
probability of the 23 cell would be equal to the probability of the 32 cell.
Because of the symmetrical nature of its equiprobability restrictions, this
model has been described in the literature as the model of symmetry (Bishop,
Fienberg, & Holland, 1975). The model of symmetry implies equal item diffi-
culty for the tasks under examination. Tasks for which this model provided an
adequate fit for the data were described as being symmetrically equivalent.

Asymmetrical Equivalence Models. Model H2 included 3 latent classes, a

mastery class, a non-mastery class, and an unscalable class composed of transi-
tional individuals. Model HZ assumed that masters would respond correctly to all
problenms presented to them.  Thus, in the mastery claés the probability of
the 33 response pattern was restricted to be 1. Similarly, the model assumad
that non-masters would fail all problems. Thus, in the non-mastery class
the probability of the 11 category was restricted to be 1. It was presumed
that in the unscalable category, the probability of a particular level of
performance on one task would be independent of a given level of performance
on the other tasks, and that the 1 and 2 categories would be equiprobable
for one of the tasks. The equiprobability restriction was included as a
criterion for distinguishing between equivalence and ordered relations for
reasons already discussed.

{odel Hé is a special case of model Hz. It is like model HZ in all
respects except that is does not include the equiprobability restriction

imposed under H Hodel Hé was included to reflect the fact that two tasks

2°
may be equivalent even though the 1 and 2 categories of the more difficult

task are not equiprobable. It may happen that the probability of a response




in the 32 cell is greater than the probability of a response in the 31 cell.'
This is exactly the opposite of what is to be expected under the hypothesis -
of an ordered relation between tasks. Uhen the hypothesis of equiprobability
is rejected, but the probability of the 32 cell is greater than the probabi-
lity of the 31 cell, it is appropriate to test models which assert equivalence,
but which do not include equiprobability restrictions. Mcldel HZ' is one u
such model. ‘
Model H3 included 4 latent classes, a non-mastery class, a partial
mastery class, a mastery class, and an unscalable class. The partial mastery
class was similar to the unscalable class in that both reflected less than
completely accurate responding on the part of examinees. However, model H3
asserted that individuals in the partial mastery class coasistently performed 1
out of 2 problems correctly on both tasks under examination for a given task
pair. More specifically, the partial mastery class asserted that for members
of that class the probability of getting 1 out of 2 items correct for both
tasks would be 1. The unscalable class did not assume this kind of consistency
in partially accurate responding.
Model H3' assumed four latent classes, a non-mastery class, a partial
mastery class, a mastery class, and an unscalable class. The restrictions
for non-mastery, partial mastery, and mastery classes were the same as those
given for H3. Moreover, similar restrictions were imposed for partial
mastery.
Model 33' differed from Hy

restriction in the unscalable category. The concept of partial mastery !

because it did not impose an equiprobability

implies a significant number of individuals who get 1 problem right. Given

this state of affairs, not only should a build-up of individuals in the 22

category be expected, but also it would not be unreasonable for the N
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probability of occurrence of the 32 category to be greater than the probability

for the 31 category. 1lodel H3' reflects the fact that equiprobability need
not always occur in a model asserting equivalence between tasks.

llodel H4 is very simila. to Hz. The difference between the two is
related to the equiprobability restriction in the unscalable class., In
asserting both independence and equiprobability, model H4 necessarily makes
th '1 and 22 cells as well as the 31 and 32 cells equiprobable in the
unscalable latent class. Equiprobability does not obtain for the 11 and 12
cells because the 11 cell represents a separate latent class, i.e,, the non-
mastery class. Model H4 restricts equiprobability in the unscalable class to
the 31 and 32 cells. This is accomplished by making the 21 cell represent a
separate latent class. The probability of the 21 response pattern in this
class is restricted to be 1. The effect of this is to make the observed
and expected cell frequencies for the 21 pattern equal. Thus the pattern
contributes nothing to the value of XZ'

on the 21 cell, model H& is exactly the same as H_,. Like H,, it contains

2 4

mastery, non-mastery and unscalable latent classes. Moreover, the restrictions

on the mastery and non-mastery classes are the same as those for H?. The

unscalable category assumes independence between tasks with the 21 pattern
ruled out of consideration. In addition, it asserts equiprobability for the
31 and 32 cells.

An Ordered Relation Model. Model H5 asserted an ordered relation be-

tuveen task palrs. This model contained four latent classes, a non-mastery

class, an unscalable class, a mastery class and a subordinate task mastery
class. The restrictions in the non-mastery and mastery classes were identi-
cal to those used in the equivalence models. Independence was assumed in

the unscalable class. In the subordinate task mastery class the probability

With the exception of the restriction
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of passing both subordinate task items was assumed to be 1. The proba-
bility of passing both superordinate task items was assumed to be zero and
the probabilities of getting no correct responses and 1 correct response on
the superordinate task were set equal to the observed proportions of
responses in those two categories. The last of these restrictions was
imposed so that all individuals who had mastered the subordinate task
including those in transition toward superordinate task mastery would be

included in the latent class reflecting subordinate task mastery.

- [
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Results

Within Domain Results. Results of the model testing within~domains revealed

two domains instead of the three hypothesized. The factoring and distributive
property problems turned out to be in one domain. Tables 4 and 5, in Appendix A,
present the observed responses for the cross-classification of every possible
task pair for each of the two domains. Table 4 shows the cross-classification
for the term transposition domain while Table 5 displays the cross-classification
for the Distributive Property-factoring domain. In Table 4 the letters indicate
the addition-subtraction (A) and multiplication-division (M) dimensions. In
Table 5 they stand for factoring (F) and distributive property (D) problems.
Numbers in both tables represent the number of steps required for problem soluticn.
The response patterns in the tables indicate various combinations of

the number of correct responses for each task pair examined. For example,

the 11 pattern indicates no correct responses on either taslk while the

33 pattern represents 2 correct responses for each task. Note the large number

of responses falling in the 11 and 33 categories in the tables. . These patterns

represent the critical cells for establishing equivalence relations. MNotice
further that most task sets have about the seame number of individuals in the
31 and 32 cells. The 31 cell represents individuals who have mastered one
task, but have not begun to acquire the second task. As already indicated,
given an ordered relation betveen tasks, the number of individuals in the

31 cell would be expected to be larger than the number of individuals in the
32 cell. Oa the other hand, given an equivalence relation between the tasks,
the number of individuals in both the 31 and 32 cells would be expected to

-

be small.




Tables 6 and 7, in Appendix A, presen® the results of model testing
for the hypothesized domains. In the model testing process, all possible
pairs of tasks within a given domain were compared. Table 6 shows the chi-
squared tests for all possible task pairs in the term transposition domain.
The letters designating tasks refer to the addition-subtraction (A) and
multiplication-division({) dimensions for this domain. The numbers refer
to the number of steps required for problem solution. For example, 1 refers

to a problem requiring only one step for solution.

The model testing process required the selection of a preferred model

based on statistical comparisons among various models examined. To illustrate

the comparison process, consider the results for HO and HZ for the Al-2

task pair given in Table 6. The X2 value for model Ho is 200.65 with 5 |

degrees of freedom, which is significant well beyond the .01 level. The
X2 value for model HZ is 1.18 with 3 degrees of freedom which has a p value

of about .90. lModel H. and H_  are hierarchical. That is, H, contains all

0 2 2

of the characteristics of HO plus 2 additional characteristics. These addi-

tional characteristics reflect the inclusion of a mastery and non-mastery
latent class under Hz. Mulel HZ has 3 degrees of freedom, whereas HO has 5.

The loss of 2 degrees of frecdom reflects the inclusion of the non-mastery

and mastery latent classes. Because H_ and H, are hierarchical, they can be

o] 2
compared statistically (Goodman, 1974). The X2 for Hz'can be subtracted from
the X2 for H.. The result will be an x2 with 2 degrees of freedom. In the

o

case of the Al-Ml task pair, the subtraction of Hz from Ho yields an Xz

of 198.47 with 2 degrees of freedom, which is significant far beyond the .0l
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level. Model HZ provides an excellent fit for the data. Moreover, none of

the rnodels improve over Hz. Consequently, H, was selected as the preferred

2
model for the Al-M1 task pair. Not all of the models in Table are

hierarchically related. For example, H the symmetyy model, is not hier-—

l’
archically related to either HO or Hz. Consequently, it is not possible to

compare H_ directly with HO or H, .

1 2

The results on Table 6 show that in no case did model H_ or Hl provide

(]
an acceptable fit for the data. Consequently, the hypothesis that the task
pairs under examination were unrelated and the hypothesis that they were
symmetrically equivalent could be rejected for all of the tasks investigated.
In all cases except one, one of the asymmetrical equivalence models
provided an acceétable fit for the data. In some instances, the model in-
cluding an equiprobability restriction provided an adequate fit. In other
cases, for example in the case of task pair Al-A2, the equiprobability assump-
tion was rejected. However, the probability of being in the 32 cell was
found to be higher than the probability of being in the 31 cell. Consequently,
it could safely be concluded that the tasks for this pair were not ordered.
“The one instance in which the hypothesis of equivalence relations was
rejécted was that involving the Al-li2 task pair. The tvo tasks involved in
this cowmparison represented marked differcnces in difficulty level within
the item domain. The one~step addition problenr was the simplest task in
the domain, whereas the tuo-step multiplication problem was among the most
difficult, 1HModel HS provided an acceptable fit for these two tasks indicating
an ordered relation between them. The ordered relation for the Al-M2 task
pair suggests permeability in domain boundaries. Tasks Al and A2 are in the
same domain. A2 and M2 are not in the same domain. The fact that Al and

M2 are found to be in separate domains suggests that the boundaries between

domains may not be rigid.




-31-

The results for the term transposition domain reflect a hizghly coasis-
tent pattern. As already indicated, the hypothesis of asymmetrical equiva-
leace was supported in every instance except one. The asymmetrical equiva-
lence observed in the domain reveals a structured arrangerment of tasks.

The tasks requiring two steps for problem solution are more difficult than
these requiring only a single step.

Table 7 shows the results of model testing for the combined distributive
property~-factoring domain. The letters in Table 7 refer to factoring prob-
lems (F) and distributive property problems (D), and the numbers indicate

the nuzber of steps reguired for problem solution.

As in the case of the transposition domain, the results for the combined
distributive property-factoring domain reveal a highly consistent pattern.

In rost instances, one of the asymmetrical equivalence models provides a

suitable fit for the cata. However, in some cases, the model of symmetry
fit the data to an acceptable degree. This suggests that at the higher
levels of algebra skill, problens are more likely to be equivalent for all
groups of individuals, including those in transition. This is understan-
dable since those in transition with respect to higher level skills bring a
broad background of subordinate skills to the task of solving higher level
factoring and distributive property problems.

In only one case did a task not form an equivalence relation with other
tasks. This was the case for the most difficult factoring task. Model
HS provided an acceptable fit for compariszons involving this task. Model
testing revealed that this task was superordinate to all of the other dis-

tributive property and factoring tasks. Analysis of the characteristics

of the task revealed that it required not only factoring, but also appli-
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cation of the multiplication operations used in distributive property problems.
This suggests the existence of a superordinate domain hierarchically related
to the factoring-~distributive property domain. Further research is needed

to investigate this possibility.

Between Domain Results. Table 8, in Appendix A, presents observed response

patterns for the cross-classification of tasks representing the term transposi-
tion and factoring-distributive peroperty domains. Note the large number of
individuals attaining the 31 response pattern and the relatively small number of
individuals for the 32 pattern. This is what is to be expected under the

hypothesis of an ordered relation between task pairs.

Table 9 in Appendix A, shows the chi-squared tests for the cross-
classifications in Table &. In all cases model HS afforded an acceptable
fit for the data, and in all cases except four model H5 was preferred
over the other models tested. Two equivalence models were preferred over
H5 in these four cases. liodel H4 was preferred for the comparison involving
two-step addition and three-step application of the distributive property
and the comparison of two-step addition with the five-step distributive
property problem. liodel H3 was preferred for the comparison of two-step
multiplication and two-step factoring. These cases provide additional
evidence of boundary permeability.

Figure 1 summarizes both the within-domain and between-domain findings.
The circles indicate domains. Ordering of tasks within domains and between

domains is indicated by position in the vertical dimension. The long

tube penetrating the two circles represents permeability in domain boundaries.
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Pistribution (4 steps)/

factoring (4 steps)
Distribution (3 steps)/
factoring (3 steps)
factoring (2 steps)

Factoring/Distributive Property

Addition/subtrac—
tion (2 steps)

tultiplication/divi-
sion (2 steps)

tultiplication/division

(1 step)
Addition/subtraction
(1 step)

Term Transposition

Figure 1.

Discussion

The results for task comparisons both within and between domains
supported the major hypotheses advanced in the study. The within~domain
findings are congruent with the view that algebra tasks representing a
class of mathematical operations may be organized into homogeneous
domains that involve asymmetrical equivalence relations. loreover, as
hypothesized asymmetrical equivalence is related to the number of steps
required to achieve problem solution. The discovery of asymmetrical
ordering raises questions about generalization and transfer within domains
that may be important for instruction. For example, it is possible that
instruction in a high difficulty task but also in generalization to low

difficulty tasks. By contrast, instruction in a low difficulty task
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might not generalize directly to high difficulty problems. Howvever,
mastery of a low difficulty task could mediate positive transfer facili-
tating high difficulty task learning. Possibilities such as these call
for resecarch relating domain structure to generalization and transfer
issues.

The unexpected finding that factoring and distributive property
problems involving term and expression multiplication were in the same
domain suggests that homogencous domains may encompass rather broad
classes of tasks. While it is true that factoring and multiplying an
expression by a term are both regarded by mathematicians as applications of
the distributive property, these tasls arc nonetheless quite different
in terms of the specific operations that they require. The fact that
they were found to be in the same domain suggests that generalization
of algebra skills may be very broad indeed, Pesearch is needed to

deternine the breadth of generalization within domains.

The results for the between domain comparison support the hypothesis
that orcdered relations may exist between pairs of tasks in which one
task is a component of the other, This finding linked to the within-
domain results raises additional generalization and transfer questions
with potentially important instructional implications. All of these
relate to the question of how a student can best advance from a subor-
dinate domain to a superordinate domain. For example, it would be of
interest to know whother positive transfer would be significantly greater
from a high difficulty subordinate domain task to a low difficulty
superodinate domain task than from a high difficulty subordinate task

to a high difficulty superordinate task.




The results with respect to boundary permeability raise additional
questions regarding advancement from a subordinate to a superordinate
domain. The findings suggest that permeability may exist and thereby
raise the possibility of direct generalization between subordinate and
superordinate dowmains. However, ambiguity in the permeability findings

' indicate the neced for further research on the permeability phenomenon

l before conducting zeneralization studies. Permeability did not alwvays
occur in the manner hypothesized. In some cases it did talte place as
expected betveen the top level of the subordinate domain and the bottonm
level of the superordinate domain. However, in other instances it
involved problems not adjacent to the domain boundary. This can be

explained by the fact that to some extent perwmeability may be a function

of unreliable responding. For example, a large number of indivicuals
perforning inconsistently on an hypothesized superordinate task would
produce a buildup in the 32 cell that could mask the presence of an

ordered relation. Examination of the observed response patterns in

Table 9 suggests that some instances of apparent permeability may have

resulted from high levels of inconsistent superordinate task responding.
However, it is also true that the numbers in the 31 cell were generally
smaller for task pairs close to the boundary betueen domains than for
pairs far from the boundary. This suggests permeability. 1In order to
resolve the permeability question, constant low levels of inconsistent
superordinate task responding would be required. Further research is

needed to study the relation of permeability to response inconsistency.
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Second Year Research

The major focus of research for the second year was on the instructional
validation of domains (Task 3) and hierarchies (Task 4). A different set of
problem solving tasks was used because of observed ceiling effects for the tasks
used in the first year. The tasks were too easy. Consequently, it was nece-
ssary to select a new set of algebra tasks and psychometrically validate these
before proceding to the studies for Task 3 and Task 4, The second year research
contained both outcome objectives and enabling objectives for the completion

of Tasks 3 and 4.

Second Year Objectives

Qutcome Objectives.

a. To validate item domains using an instructional validation technique.

b. To determine the extent to which psychometrically validated domains
match domains validated using an instructional validation technique.

c. To validate hypothesized prerequisite relations and positive transfer
in the training hierarchy using an instructional validation procedure.

d. To determine the congruence between psychometric and instructionally
validated models assessing prerequisite relations and positive trans-
fer in the training hierarchy.

e. To test the Gagne’and Bassler (1963) random forgetting hypothesis by
examining the congruence across learning and retention testing sessions
of validated models describing prerequisite relations and positive
transfer in the hierarchy.

The Enabling Objectives

a. To develop new tasks to meet the constraints of the data pool to be

used. The simple algebra tasks employed in the first year were not
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appropriate for a college population.

b. To develop new models which represented different types of transi-
tional classeg,which represented the distinction between prerequisite
ordering between domains and ordering by difficulty within a domain,

and which incorporated response consistency into the contingency

tables.

Models Used in the Second Year

New latent class models were developed for research in the second vear.
The models used in the first year did not allow for a specific test of Gngné's
prerequisiteness hypothesis. Rather they tested for order on the basis of the
assuription that under hierarchical ordering of two tasks there should be sig-
nificantly more individuals who were masters of the superordinate task while
being nonmasters of the subordinate task than who were masters of the super-
ordinate task and in transition on the subordinate task. The models developed
for the second research effort directly address the prerequisiteness question.
They show that prerequisiteness alone is insufficient to determine ordering.
However, they indicate that prerequisiteness can be used with other criteria
to deternine ordering. The models also provide explicit representation of
various types of transition reflected in different kinds of response incon-
sistency. Different types of transition may occur when tasks are related, but
not exactly the same. This is a typical state of affairs for most tasks of

both academic and technical nature.

The first of the new models, labeled H1 in the second year studies, des-

cribes the situation in which a domain is composed of only one task represented
by equivalent items. Model Hl includes three latent classes: A class of non-
masters who fail all items in the domain, a class of masters who pass all items,

and a class of transitional individuals for whom the probability of a passing
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response is greater than zero and less than one. Since Hl is designed to
represent relations among equivalent items the probability of a passing

response in the transitional class is assumed to be equal across items.

Model Hl is congruent with the learning hierarchy model representation of
hierarchiczl sequencing. The learning hierarchy approach assumes that each
task in a hierarchy represents an equivalence class (Gagné&, 1977). This is

the assumption made under model H Items grouped into an equivalence class

1
form what acready and Merwin (1973) have called a homogeneous item domain.
Model Hl ofifers one way to represent a domain of this kind (Bergan, in press:
Bergan, Cancelli & Luiten, 1980).

The following restrictions are imposed on the conditional probahilities

within the latent classes under model H,:

X
x o _ A'x _ B _ B'X _
Tt 1T 21

AR _ A'x _ Bx _ B'X _,
12" 127" a1 21
A _ A% B B'X
T3 137 T a3 13

where nAXZl is the probability of failing item A given membership in latent

class 1 (nonmastery class), ﬂAx12 is the probability of passing item A given

membership in latent class 2 (mastery class), and "AX13 is the probability of
passing item A given membership in latent class 3 (transition class). The

other response probabilities are similarly defined.
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Model H2 represents a rultiple task domain. Two tasks, each composed of
two items arc represented in the model. Model H2 includes all three of the

latent classes represented in H In addition, it includes latent classes

X
reflecting the assumption that the domain under examination contains similar
but non-equivalent tasks. The assumption of related, but non-equivalent tasks
suggests that therec should be some tendency for performance on items re-
presenting the same task to be more similar than performance on items repre-
senting different tasks. This tendency implies that the transition between
non-mastery and mastery will include cases of partially inconsistent perfor-
mance. That is, there should be some tendency to perform consistently on one
task while responding in an inconsistent fashion on the other. Four types of
partial inconsistency could occur. These include non-mastery of task I accom-
panied by transitional responding for task II, mastery of task I with transi-
tional responding for task II, non-mastery of task II linked to transitional
responding on task I and mastery of task II coupled with transitional responding
on task I. Each of these four types of partial inconsistency is represented
by a latent class in model HZ'
The probability of the different classes of partially inconsistent per-
formance is allowed to vary under model H2. For example, the probability of
performing task I items correctly while responding inconsistently on task II
items could be higher than the probability of performing task II items correctly
wiile responding inconsistently on task I items. This type of variability
reflects differences in task difficulty during the transition between non-
mastery and mastery.

Assumptions about partial inconsistency are reflected in the following

restrictions on transition classes:
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Note that in each of the above transition classes the restrictions for the
items representing one task indicate consistent respending and the restrictions
for the other task indicate inconsistent responding. For instance, in latent

class 5, items A and A'

are restricted to occur at level 1. By contrast, items
B and B' are restricted to represent inconsistent responding.

Model H3 is exactly the same as model HZ in all respects except that it
imposes restrictions on the latent classes that represent the case in which
tasks within a domain are assumed to be of the same difficulty level for transi-
tional individuals. The assumption of equal difficulty is reflected with the
following restrictions on the latent classes in the model:

TrX X X X

=7 s =T

6’ 5 7
where nxa is the probability of occurrence of latent class 4 and the others are
similarly defined. The first restriction depicts the assumption that the
probability of consistently failing task 1I while responding inconsistently to
task I will be equal to the probability of consistently failing task I and

responding inconsistently to task II. The second restriction handles the same

assumption with respect to passing the items.

Y
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Models "4 and HS are designed to represent the hierarchical ordering of
skills. The learning hierarchy model has been highly influenctial in providing
a basis for establishing hierarchical ordering. The sole criterion used to
determine hierarchical ordering within the learuing hierarchy model is the
prerequisitaﬁess criterion (Gagné, 1962, 1977; White & Clark, 1973). This
criterion states that one skill is prerequisite to another if, given suitable
allowance for measurement error, no one has mastered the superordinate skill
without also having acquired the subordinate skill (White & Clark, 1973). This
criterion is not sufficient to establish an ordered relation between skills.

The difficulty with the prerequisite skills criterion is that it does
not distinguish between equivalence and hierarchical ordering. For example,
consider the case of two identical tasks. If the tasks are truly identical,
individuals who have mastered one should also evidence mastery of the other.
Likewise, individuals who are nonmasters of one should display nonmastery of
the other. Finally, individuals in transition between nonmastery and mastery
should perform inconsistently on both tasks. Given appropriate allowance for
measurement error, there should be no one who displays mastery on one task and
nonmastery on the other. As this example shows, equivaience is a special case
of prerequisiteness in which the prerequisiteness criterion can be applied
regardless of which task is assumed to be superordinate.

Models H

and H.,used to represent hierarchical ordering in the present

4 5°
research, assume that the central criterion for establishing ordering should
be the existence of a class of individuals who have mastered the hypothesized
subordinate skill and at the same time are nonmasters of the hypothesized
superordinate skill. The prerequisite criterion is used as an additional tool
in establishing ordered relations. Thus, two kinds of ordered relations are

assumed. One requires only that there be a group of individuals who have

mastered a subordinate task and at the same time are nonmasters of the super-
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ordinate task. The second also imposes the prerequisiteness criterion.

Model HA’ the ordered relation model, includes all the latent classes
in model H2 plus an additional class. The additional class involves indivi-
duals who are masters of the subordinate task and nonmasters of the super-
ordinate task. This class provides the fundamental criterion for determining

ordered relations and the following restrictions are imposed upon it:

where ﬁAXlB is the probability of passing item A given membership in latent
class 8 and ﬂﬁxzs is the probability of failing item B given membership in
latent class 8. The other conditional probabilities are similarly defined

Model H4 assumes ordering, but it is not entirely consistent with the
assumption of prerequisiteness. For example, H4 includes transition indi-
viduals who may respond as nonmasters of the subordinate task but who respond
inconsistently on the superordinate task.

Model HS represents a prerequisitely ordered relation between tasks. It
reflects ordering and the notion of prerequisiteness by ruling out the transi-
tion classes inconsistent with the hypothesis of ordering. Model HS is like
H4 except for the exclusion of two transitional classes. One of these classes
depicts inconsistent superordinate task performance accompanied by nonmastery
‘of the subordinate task. The other represents mastery of the superordinate
task accompanied by inconsistent performance on the subordinate task.

Model H5 can be used as a basis for establishing the boundary between
hierarchically ordered domains (Bergan, Note 4). The use of H5 in boundary
definition ensures that there will be a significant number of individuals
who have mastered the tusks in the subordinate domain without having mastered

the tasks in the superodinate domain. In addition it assures conditions

compatible with Gagng's (1962) prerequisiteness criterion.
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The latent class models described above were used in the studies described
below to represent the domain hypothesis and prerequisite ordering hypothesis.,
Structural equation models (Bergan, 1980) were used to examine the positive
transfer hypothesis. The models employed in the research made use of a
modified path analysis technique developed by Goodman (1973). This technique
is outlined in Appendix C in conjunction with the description of latent class
techniques.

STUDY 1

The first study conducted in the investigation was a psychometric
validation study addressing the domain, prerequisite ordering, and positive
effects hypotheses. Five algebra problem solving tasks each represented by
two identical items were used in the study. Two of the tasks involved the
solution of quadratic equations while the other three required the solution
of cubic equations. The task demands were varied both for the two quadratic
problems and for the three cubic problems. One of the quadratic problems
imposed greater search demands (Newell § Simon, 1972) on the problem solver
than the other. That is, the number of possible combinations of numbers that
had to be considered to arrive at a solution was greater for one problem than
for the other. The cubic equations incorporated similar variations so that
the three cubic problems were ordered in terms of search requirements.

It was hypothesized that the two quadratic tasks would form one domain
and that the three cubic tasks would form a second domain. Because of the
variations in task demands within domains, it was assumed that there would be
differences in task difficulty within domains. It was further assumed that
the two domains would be ordered hierarchically . That is, each of the tasks
in the quadratic domain would be prerequisitely ordered with respect to each

of the tasks in the cubic domain.
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Method

_Subjects. The subjects were 203 university students who were taking
introductory psychology courses and who voluntecered to participate in the
investigation. There were approximately equal numbers of males and females
representing a wide range of educational backgrounds with respect to algebra
problem solving. Some had had many courses involving alzebra skills.

Others had had only one introductory course in highschool.

Tasks. The item form approach (Hively, 1974, Hively, Patterson § Page,
19%8) was used to select the two quadratic and three cubic equation problems
used in the study. The use of the item form technique ensured that gach of
the problems selectcd would represent a wcll-defined class of items. The
two quadratic tasks selected were: X2 + 6X + 5 =10 and 3X2 + 3X - 18 = 0.
These were labeled Q1 and QZ’ respectively, The roots representing
the solutions to these quations can be obtained by factoring. The first
quadratic can be factored into the expressions (X + 5)(X + 1) = 0. Thc second
can be factorzd into the expressions (3X + 9)(X - 2) = 0, Note that in the first
problem there is only one set of whole numbers that can be multiplied to-
gether to produce the 5 constituting the third term in the equation, namely
5 X1 . On the other hand there are several ways to produce the -18
constituting the third term in the second equation {e.g., -6 x 3, -3 x 6,
9X - 2, -2 x 9). Many more combinations of numbers have to be considered
to factor Q2 than to factor Ql' This illustrates the fact that the search
requirements attendant to solving Q2 are greater than the search requirements
associated with solving Ql'

The three cubic equations were 4X> - 20X2 + 20X = 0, 3X> + 7X° + 2X = 0,
and 24X3 + ZSX2 + 8X = 0. These were labeled Cl’ C2’ C3 respectively. The

cubic equations varied in search requirements with Cl being the least

demanding and C3 being the most demanding.
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Procedures. Two identical problems, for each of the five above tasks,
were presented to the subjects together with forty-seven other algebra problems.
The problems were arranged in a single random sequence in test booklets. Pairs
of identical items were used to take into account inconsistency in responding.
The purpose of the other algebra tasks was two-fold, Since identical items
were used, the other algebra tasks served to reduce the likelihood of indi-
viduals remembering answers to problems they may have already completed. 1In
addition, the other tasks provided data for further research on the hieraichical
arrangement of math skills. All items were scored dichotomously, either
correct or incorrect. A correct answer was one in which all the roots to an
equation were identified by the gubjects.

The administration of the test was carried out in groups ranging in size
from five to ten. The participants were told the purpose of the study and
instructed to solve for all possible values of X in the problems. 1In addition,
the subjects were told to not look back at any previously done work. During
the course of the testing, the experimenter monitored the trainees' perfor-
mance to ensure that all the items were attempted by the subjects and that all
directions were being followed.

Results

The five latent class models described in the preceeding section were used
to test the domain hypothesis and prerequisite ordering hypothesis. Model
testing was conducted for all possible cross-classifications of quadratic and
cubic equations. The observed response patterns for these cross-classifications
are given in Table 10. Note the relatively large numbers of individuals in the
quadratic-cubic cross-classifications who passed both quadratic items and
failed both cubic items. This suggests a hierarchical ordering. Likewise, note

the extremely small number of individuals who respond correctly more
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often on a superordinate than a suborainate task. This suggests prereanisite-

ness.

Table 11 presents the results of model testing for each of the cross-
classifications of quadratic and cubic equations. Asterisks indicate the
“"preforred” model for each task set examined. Preferred models were arrived
at by making statistical comparisons betweea the various models tested
(Bishop, Feinberg, & Holland, 1975; Goodman, 1974). The likelihood ratio
statistic was used in all the studies because it can be partitioned exactly.

For example, consider the chi-square tests for the Ql - Q2 cross—-classi-
fication displayed in Table 11. Model Hl yields an X2L of 29.07 with 12 degrees
of freedom. This model does not fit the data (p & .0l). However, it is

hierarchically related (Goodman, 1974) to H That is, model HZ contains

2'
2ll of the characteristics of Hl plus eight more reflecting the four partially
inconsistent latent classes of model HZ' Inclusion of these latent classes

reduces the available degrees of freedom by 8. Because they are hierarchical,

H2 and Hl can be compared statistically. The X2L of H2 can be subtracted from

The result is an X2 of 22.84 with 12 - 8 = 4 degrees of

2
the X L for Hl. L

freedom, which is significant well beyond the .00l level. Thus, mcdel HZ

inmproves significantly on Hl and provides an adequate fit for the data.
The next step in the model comparison process would be to compare model

HZ with model Il4 in order to examine the nature of the ordering relationship

between two tasks. Model H, contains all the classes of HZ plus one additional

4

class reflecting ordering. Model Hé has three degrees of freedom. Model H4

and H3 are hierarchically related. The subtraction of the two X2L values

.2
yields a X L of .30 with 1 degree of freedom (p > .5) which is not significant,
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Since nodel H2 improves the fit over Hl and is a more parsimonious
represeantation of the data than offered under model HA’ it is a candidate for

adoption as the preferred model. However, before a final decision can be made,

it is necessary to consider H3. Model H3 fits the data adequately and is

hierarchically related to HZ' Model H3 has two additional characteristics

imposed upon the latent classes that are common to models HZ and H3. These

restrictions are designed to represent tasks of the same difficulty level.

These two restrictions afford two additional degreces of freedom for model H3.
. 2 .
3 yields a X L of

1.58 with 2 degrees of freedom (p > .5). Since HZ does not significantly im-

prove the fit afforded by H3, model H3 is the preferred model.

The subtraction of the X2L for model H2 fror the XzL for H

The preferred models displayed in Table 2 demonstrated congruence with
the hypothesis advanced earlier. The data for the cross-classification of Ql
and Q2 was best fit under model H3. This suggested that Ql and Q2 were in
the same domain and of equal difficulty, Although the quadratic items did
represent one domain as hypothesized, it was expected that Ql and Q2 would
exhibit some difference in difficulty given the hypothesized search require-
ments characteristic of Q1 and QZ'

The model comparisons also revealed that a single domain existed for C1,
C2, and C3. The preferred model for the C1=C2 task set was Hl’ suggesting
that Cl and C2 were essentially one task for the individuals. The C2-C3
cross—classification was best fit under: model H2. This indicated that these

two items, although in the same domain, were different in difficulty level.

The comparison of Cl and C3 manifested a greater difference in difficulty
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level than found for the C2-C3 cross-classification. The preferred model was
Hé’ indicating ordering but not prerequisiteness. Although Cl-C3 were repre-
sented by one domain, a significant ordering by difficulty relationship was
present.

The general structure to the cubic data was as hypothesized. One domain
was realized and the variations in task difficulty that were found were expected.
Cl, the least demanding of the cubic equations, was shown to be much less
difficult for subjects than C3, the most demanding of the three cubics. C2,
the moderately demanding task, was less difficult than C3. The only contrary
finding was the result that Cl and C2, two items with different amounts of
hypothesized search requirements, were essentially the same task for individuals.

The comparisons of the quadratics with the cubics suggested that with one
exception the quadratics and the cubics were in different domains. This was
illustrated through the crcss—classificatioﬁs of Qi-C2, Q1-C1, Q1-C3, Q2-C2,
and Q1-C3. The preferred model for the task sets was He which suggested a
prerequisite relation between these items and a hierarchical relationship
between the quadratic and cubic domains. This was hypothesized to be the re-
lationship between these two general types of tasks.

However, some overlap between these two domains was jdentified. For the
coaparison of Q2 and Cl, the preferred model was HZ’ which suggested that the
two items were not equally difficult but nonetheless in the same domain. This
indicated that the two domains were not entirely disassociated, but that sorme
permeability between the two domains existed.

The last hypothesis tested examined the effects of subordinate skill
levels on the acquisition of superordinate skills. Goodman's (1973) modified
path analysis approach was used to assess positive effects for tasks representing

both the quadratic and the cubic domains. The Ql, C2, and C3 items were selected
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because the tasks represented by these items were used in the instructional
validation of positive effects conducted in study 3. For the case of two
variables, the effect of subordinate competency on superordinate competency
can be tested by the usual chi-square test of independence (Fienberg, 1977).
g The test of the effect of Q1 on C2 resulted in a XZL value of 72.47
with 1 degree of freedom (p = 0.00). 1In a similar test, the effect of Ql on
C3 yielded a X2L value of 51.75 with 1 degree of freedom (p = 0.00). This
supports the hypothesis that Ql competency does effect the competency level
achieved in C2 and C3.
Discussion

The results revealing the hierarchical ordering of quadratic and cubic

asks suggest that these tasks must differ in certain fundamental ways. There

are two important differences between the quadratic and cubic tasks. One is
that the cubic equations require the identification of three roots whereas the
quadratic equations call for the identification of only two roots. The second
is that each cubic equation requires as a first step that an X be factored from
the threce term expression on the left side of the equation., Factoring is not
required in the quadratic case. Indeed, any attempt to factor an X in the case
of a quadratic problem would tend to make it impossible to solve the problem
(Bundy, Note 5; Carry, Lewis, & Bernard, Note 6). Thus, what was a required
initial step in the cubic case was an incorrect step in the quadratic case.

The results within domains contained unexpected findings. In particular,
the assumption that variations in search requirements would produce variations

in task difficulty within domains was supported only for the C, - C3, c, -C

1 2 3
task pairs. 1In all other cases the tasks under study within domains were

shown to reflect equal difficulty levels.

The within domain findings suggest that examinees were able to reduce the
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search demands associated with the various problems to an extent that mini~
mized variations in task difficulty. Search requirements for the problems could
be reduced in two ways. One involved the use of the quadratic formula )
—btU 33_1_335 . This formula eliminates the search process required in the
factoriiz approach to the solution of the equations. An informal analysis of
exaninee protocols revealed that a small number of examinees did use the quadratic
fornmula to good advantage. However, the vast majority used the factoring approach.
The observed preference for factoring is consistent with findings reported by
Carry, Lewis and Bernard (Note 6). Those who attempted to factor the left

sides of the equations, for example, into expressions such as 3(X + 3)(X - 2) =0
could reduce search requirements by such means as initially factoring a number
from the three terms in the left side of the equation. This type of strategy

was used by the vast majority of examinees who were successful in solving the
probleas.

It was anticipated that examinees would use different strategies to reduce
search requirements in the problems. What was not expected is that for the most
part they would be equally effective in applying the appropriate strategies to
the various problems. Yet, with the exception of the C3 problem, this was the
case.

Although the tasks within domains tended to be of equal difficulty, for
the most part the items did not form an equivalence class of the sort that
might be expected under the learning hierarchy model. Model Hl asserting
equivalence among items fit the data for only one task set, C1 - C2. The
analyses for all of the other task pairs supported the assumption that each
task formed a subclass within the domain to which it belonged. Tasks C1 and C2
are not apparently any more similar than any other of the task pairs, and it is

not certain why they should be well represented by model H1 when Hl was not

preferred for the other task pairs.
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The results for the structural analysis examining the positive effects
hypothesis require brief comment. Given the existence of two domains, the

finding the Q1 affected both C, and C3 is exactly what should be expected. By

2

contrast if C, and C, were in two separate hierarchically ordered domains,

2 3
there should have been no direct effect of Ql on C3 (Bergan, 1980 ). Rather,

Ql would exert its influence on C, indirectly through its effects on C

3 2°
STUDY 2

Study 2 was an instructional validation study designed to examine the domain
hypotheses. The major purpose of the study was to determine the congruence of
psychometric and instructicnal validation findings with respect to the domain
memberhips of quadratic and cubic tasks.

The domain hypothesis takes on a somewhat different meaning under the
instructional validation paradigm than it has under the psychometric paradigm.
In the psychometric validation case, tasks may be said to be in the same dom:in
if data can be adequately represented by mastery, nonmastery and transition
latent classes, each of which is characterized by a certain type of response
pattern. The same latent classes may be used in domain validation under instruc-
tional conditions, but they may take on a different interpretation in the in-
structional validation case. More specifically; some of the latent classes in-
dicate generalization under the instructional paradigm whereas they do not nece-
ssarily imply generalization under the psychometric paradigm. For example,
consider the case in which a group of individuals is trained on quadratic task
I and then tested on that task and quadratic task II, Under these conditions
the mastery class represented by correct performance on both tasks indicates a
group -of individuals who have generalized task I skill to task II. Under psy-

chometric validation conditions mastery indicates merely that there is a group of

individuals who respond correctly on both tasks.
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It is not just the mastery class that implies generalization under an

instructional validation paradigm. Each of the various possible transition

classes also implies a degre i i
P gsree of generalization. It is only the nonmastery class
that siznifies a lack of generalization,
The process of determining the congruence between psychometric and instructional
validation can be conceptualized as an investigation of whether or not models

representing the tendency to respond in the same way on different tasks are

congruent with findings for models representing generalization across tasks.

In the process of determining the congruence of psychometric and instructional
techniques, study 2 investigated generalization within the quadratic and cubic
domains identified in study 1. It examined the question of whether or not
individuals trained on one set of Q1 problems would generalize what they had

b learned to other Q1 problems and to Q2 problems. Likewise, it investigated

the extent to which individuals trained on a set of Q2 problems would generalize
their learning to other Q2 problems and to Q1 problems. It examined the
generalization issue in an analogous fashion for the C1 and C2 tasks from the
cubic domain.

The issue of generalization is of interest not only within domains, but

also between hierarchically ordgred domains. Insofar as hierarchical ordering
( implies the existence of a class‘nf individuals who are masters of the skills
in the subomrinate domain and nonmisters of the skills in the superordinate
domain, it is reasonable to assume that generalization from a subordinate

domain task to a superordinate domain task should be minimal. However,

generalization should be substantial from a superordinate task to a subordinate
i task. GagnG (1973) has hypothesized that an individual who learns a super-
ordinate skill without having rcceived instruction in the related skill will

in the course of mastering the superodinate skill acquire the prerequisite

U S——
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skill. This hypothesis implies downward generalization from the superordinate
skill to the subordinate skill. Cotton, Gallagher and Marshal (1977) discuss
this type of downward generalization and point out that it has not been
studied.

Study 2 examined both upward and downward generalization between the
quadratic and cubic domains identified in Study 1. It investigated the extent

to which individuals trained on Q, or Q2 problems generalized to C. and C,

1 1

problems and it examined the extent to which individuals trained on C1 or C2

problems generalized to Q1 and Q2 problems.

Method

Subjects. The subjects were 325 volunteers from the University of Arizona
enrolled in an Introductory to Educational Psychology class who represented
a wide range of skill levels insolving algebra prcblems.

Tasks. Two tasks from the quadratic domain (Ql and Q2) and two tasks from
the cubic domain (C1 and C2) were used in the study. All items were generated
using the item forms and item form shells used in Study 1. Different items
were generated for each training phase and each testing phase of the study.

Procedures. A pretest was first given to the 325 volunteers in groups of

approximately twenty in size. It consisted of two problems for each of the above

four tasks in a random sequence. Identical problems were not used because only

eight problems were presented to the subjects. However, the pairs of items

were isomorphic since they were generated from the same item forms and item form

shells. The administration of the pretest involved the same directions and
monitoring activities used in Study 1. Since Study 2 was to involve instruction

in the four aboyve math problems, it was necessary to identify those trainees

e
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who could not correctly solve any of the problems on the pretest. Failing a
problem was defined as not correctly solving for all of the values of X in the
equation. Of the 325 volunteers, 246 met the criterion of failing all the
items on the prapeyr, Those who qualified for the training portion of the
study were randomly assigned to one of four training conditions involving
instruction in Ql’ Q2, Cl’ and CZ'
Training involved presenting the subjects with a problem and then modeling
feedback demonstrating a sequence of steps leading to problem solution. The
demonstration included verbal descriptions of rules and strategies applied in
the problem solving. The rules and strategies included determing the number
of roots, factoring and eliminating common elements, simplifying equations
into factored expressions, obtaining roots, and finally checking the roots.
These steps are illustrated in Table 12, however, in a more abbreviated form
than used in the study. Both the problems and the demonstration feedback
were presented in written form in a manner analogous to that used in programmed
instruction. The training materials used in Studies 2 and 3 are provided in
Appendix B.
Three trials were given. The amount of feedback was reduced systematically
over the three trials. On trial 1, feedback included detailed illustrations
of all operations used in achieving a problem solution. On trial 2, some of
the operations required to carry out a particular step in problem solving were
not spelled out. Specifically, the steps required to factor the equation into
expressions were reduced in trial 2. Trial 3 feedback contained only a
sequence of equations. No verbal descriptions of steps were included. Table 13
illustrates a portion of the type of feedback provided during each of the three

trials.
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To attain a corrcct score, all solutions to an equation had to be identified
by an individual.
Results

The five latent class models uscd in Study 1 were employed to examine the
conzruence of instructionally validated and psychometrically validated domains,
As in Study 1, statistical comparisons were made between models to arrive at
a preferred model. The model testing was conducted for only those cross classi-
fications of the quadratics and cubics that involved the specific task on which
Subjects were trained. For example, for those subjects trained in Ql’ only the
comparisons of Ql— Q2, Q1 - Cl’ and Q1 - C2 were made.

The observed response patterns for all the various cross-classifications of
tasks are given in Table j4. The cross-classifications for the groups trained
in the two quudratic tasks suggest a hierarchical ordering between the quadratic
and cubic tasks. This is evidenced by the large number of subjects who passed
both quadratic items but failed both cubic items. A prerequisite relationship
is further indicated by the extremely small nurber of trainees responding
correctly more on the superordinate task than the subordinate task. This finding
is highlighted by the very small numbers representing mastery of both the
quadratcis and cubics following training in Q1 or Q2.

On the other hand, for those subjects trained in C1 or Cz, there were
significantly more trainees who mastered both the quadratic and cubic items.
This suggests downward generalization from the cubic task to the quadratic task.
It is apparent that the mastery and nonmastery cells in the table, the 1111 cell
and the 2222 cell , account for the vast majority of the subjects' responses.
This suggests that trainees who learned the cubic task also learned how to
solve the quadratic tasks. Few subjects actually learned the cubic task and

failed the quadratic task when trained in C1 or CZ’
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The results of the model testing are presented in Table 15. In the case of
subjects trained in Q1 or Q2 the quadratic items were found to prerequisitely
ordered with the cubic items. Model “5’ indicating prerequisit ordering, was
the preferred model for the Ql - Cl’ Ql— CZ’ Q2— Cl’ and QZ- C2 task sets.

The anualyses for the Ql- Q2 task set for these same training groups indicated
that Q1 and Q2 were of the same domain. For subjects trained in Q2, the pre-
ferred model was Hl’ a model suggesting that Q1 and Q2 were essentially the same
task for individuals. The preferred modcl for the Ql- Q2 cross-classifications
of the group trained in Ql was H2. Model H2 offered the interpretation that
although the two items were in the same domain they were not equally difficult.

The Q1 and Q2 training conditions afforded the opportunity to examine
upward generalization. Upward generalization did not occur. This is apparent
from the observed response patterns. No statistical test was needed to verify
the lack of generalization. In cases of training under either Ql or Q2 there
werc never more than two people who responded correctly to a cubic item.

The cubic items, like the quadratic items, were shown to be in the same
domain. This is indicated by the C_- C, analyses for subjects trained in either

2 71

C1 or C2. The preferred model for both groups was Hz, a model suggesting the
existence of a single domain with items which were of different difficulty
levels,

Training under ¢y and C2 afforded the opportunity to examine downward
generalization. The analysis for the various cross-classifications of.cubic
and quadratic tasks indicated that such generalization did occur. However, it
did not occur in the same way under C2 training as it did under C1 training.
For subjects trained in C1 problems, model Hy indicating task equivalence

was preferred. This suggested that if C1 was learned, Q1 and Q2 were also

learned and if C1 was not learned, Q1 and Q2 were not learned.
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By contrast, for subjects trained under C2, H4 indicating an ordered relation

was the preferred model. This indicated that when C, was learned, Q1 and Q2

2
were also learned. However, it also suggested that C2 training had a beneficial

effect on Q

N and 2, learning even vhen Cz was not learned.

~2
Discussion
The results for this study support the general hypothesis that domains

validated psychometrically can be expected to be congruent with domains validated

instructionally. The analyses for both quadratic equations and cubic equations

revealed complete congruence in domain assignment. These results support the
assumption that domain membership determined psychometrically is congruent

with generalization of skills occurring in the course of skill learning.

The occurrence of generalization has instructional significance in that it
indicates that instructors may provide instruction in one skill in a skill domain
and anticipate that a significant number of learners will generalize that

skill to the performance of other skills in the domain.

The occurrence of generalization is both a desired and an expected outcome
in educational environments, and it is not surprising that it occurred. What
is particularly important to point out is that psychometrically validated
domains were useful in predicting the extent of occurrence of generalization.
Instruction in the quadratic domain produced generalization within that
domain. Yet, there was no generalization to the cubic domain. By contrast,
as predicted, irstruction in the cubic domain produced downward generalization
to quadratic tasks. As these results show, the trainee who can master a
supcrordinate task without receiving instruction in the subordinate task
derives a double benefit. Congruent with Gagné's (1973) expectations, the

trainee may acquire not only the superordinate skill but also the subordinate
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skill as a result of receiving superordinate skill instructions. A corrolary
to this result is that even though a learner may Tiot master the superordinate
skill, superordinate skill instruction may eventuate in subordinate skill
mastery. This state of affairs occurred in the case of trainees | who
reccived instruction on C2 problems. The preferred model for both the Ql—C2
and Q2—C2 task sets given C2 training was H5 indicating prerequisite ordering.
Model HS includes a class of individuals who are nonmasters of the superodinate
skill and masters of the subordinate skill indicating that some learners

mastered Q1 and Q2 tasks while being nonmasters of C2 under instruction in

C2 tasks.

The above generalization findings suggest the advisability of targeting
instruction markedly ahead of the learner's current level of skill rather than
folloving the well accepted maximum of taking the learner from his/her current
level in a step by step fashion to higher levels of achievement. Presumably,
there is some limit to how far ahead one can skip before reaching a situation
in which little or no learning occurs. The feasibility of skipping domains
may also vary based on the individual characteristics of learners. Factors
affecting learning when subordinate domains are skipped is a topic in need of
much research.

Although the findings for Study 2 were generally congruent with the findings

reported for Study 1, there were some interesting differences between Study 1

‘and Study 2 results. 1In the case of the two quadratic items under psychometric

validation, model HS was preferred, indicating scparate tasks of equal difficulty.
Under instructional validation, the preferred model for the Ql- Q2 task set was

H1 under Q, training and H, under Q1 training. This indicated that when training

2
was provided for Ql’ the task hypothesized to be the least difficult, Qz,was shown

to be more difficult than Ql' On the other hand, when training was provided for
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the more difficult Q2 task, the two tasks were shown to be equivalent. This
suggests conplete downward generalization and partial upward generalization within
the quadratic domain.

For the cubic domain, the results were somewhat different. Under psycho-
metric validation model Hl was preferrcd for the Cl— C2 task set. However, under

instractieonal validation, Hz was preferred under both C1 and C, training. Thus,

2
training on the most difficult task did not produce task equivalence (i.e. completec
downward generalization) in the cubic domain as it did in the quadratic domain.

There are differences in task relations for the cubic and quadratic domains
that could account for the lack of congruence in downward generalization for the
quadratic and cubic domains. In the case of the quadratic domain factoring a
nunber from the expression on the left side of the equation in a Q2 problem led to
an expression identical to the left side of a Q1 problem. Thus, a Q2 problem
could be described as being exactly the same as a Ql problem except that it required
an ~dditional step. This was not the case for the cubic problems. Problems of
the C2 type could not be related to C1 problems by performing an additional step.
Thus, it is not too surprising that the cubic problems varied in difficulty
regardless of whether training occurred under C1 or CZ'

The fact that quadratic and cubic problems varied in difficulty under instruc-
tional validation, but not under psychometric validation, requires comment. The
psychometric validation study reflected students development of algebra problem
solving skills over a long time span. In the course of development, trainees
have the opportunity to acquire a large repertory of problem solving strategies.

By contrast, under instructional validation conditions the opportunities for
strategy acquisition are necessarily limited. The range of problems to which

trainees car be exposed is small and the time allotted for constructive thought

about the problems presented is minimal. Thus, it is reasonable that differences

4
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in task difficulty will appear to be more pronounced under instructional
validation than under psychometric validation.

A final discrepant result between the psychometric and instructional
validation that calls for discussion involves domain permeability. Permea-
bility occurred under psychometric validation, but not under instructional
validation. This may have happened for the same reason as that advanced with
respect to the discrepant findings discussed in the last paragraph. Differences
in task difficulty may be more pronounced under instructional validation than
under psychometric validation.

STUDY 3

Study 3 was an instructional validation study. One purpose of the investi-
gation was to determine the congruence of psychometrically validated and in-
structionally validated prerequisite orderings. As indicated earlier, pre—
vious research (Gagdg & Bassler, 1963; White, 1976; White & Gagng, 1978) raised
the question of whether or not psychometrically validated hierarchies can be
expected to yield results congruent with instructionally validated hierarchies.
A related question had to do with whether or not skills may be forgotten in
a different order than the order in which they are learned. Study 3 investi-
gated both of these questions.

A second purpose of the investigation was to determine the congruence of
positive efiects. established psychometrically and positive effects established
instructionally. This involved determining whether or not the same structural
model was preferred under instructional validation as under psychometric
validation.

A third goal of the study was to determine the nature of positive effects
validated under instructional conditions. The meaning of the positive effects

hypothesis may be different under psychometric and instructional validation
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procedures. In the case of psychometric validation, to say that skill Q1

has a positive effect on skill C, implies that skill Q1 has a causal influence

2

on skill C2. Three conditions have been advanced as necessary for hypothesizing
a causal relation in the structural equation literature (Bergan, in press;

Heise, 1975). One is a theoretical justification for the hypohtesized causal
relation. The second is assurance that the causal variable occurs in time either
prior to or simultaneocusly with the variable that it is assumed to effect and

the third is empirical evidence of a relationship between the two variables.
Psychometric validation can satisfy these three conditions. An appropriate
theoretical model can be provided asserting a causal effect between skills.
Validation of prerequisite ordering can assure that the causal variable occurs
before or simultaneously with the variable that it is presumed to effect.
Finally, application of structural equation techniques can determine the exis-
tence of a relationship between the variables of interest,

Althcugh the psychometric technique satisfies the conditions for determing
of causal relation, there remains some ambiguity in the interpretation of the
term effect under the psychometric validation approach. In particular to say
that one skill affects another under psychometric validation may imply that
mastery of the first skill influences the performance of the second skill in
the absence of training with respect to the second skill or it may mean that
mastery of the first skill influences the learning of the second skill. The
former of these cases implies generalization whereas the latter implies trans-
fer. Instructional validation also may involve generalization or transfer.
However, in the case of instructional validation, it is possible to separate
generalization effects from transfer effects.

Study 3 examined the question of whether or not a positive effect of a
subordiinate »kill on a superordinate skill implied generalization or transfer

or both. In addition , it looked at the question of whether or not a lower order
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skill within a domain affected generalization and/or transfer to a hither order
skill within the domain.
Method

Subjects. One hundred and seventy-two subjects in an intorductory psychology
course volunteered for this study.

Tasks. One task from the quadratic domain (Ql) and two tasks from the cubic
domain (C2 and C3) were used in this study. All items were generated using
the item forms and item form shells used in study 1. Different items were
generated for each training and testing phase of the study.

Procedures. All the trainees first demomstrated their inability to correctly
solve all the problems targeted for investigation on a pretest. To correctly
respond to an item, an individual had to identify all the solutions to a problem.
The pretest consisted of two problems for each of the above three tasks presented
in a random sequence. Items were generated using the item form approach described
previously. The administration of the pretest involved the same directions and
monitoring activities used in Study 1 and Study 2.

Following the pretest, 172 trainees received introduction in Ql, C2 and
C3 in that order. The instruction was given in groups ranging in size from three
to eight, and was of the exact format used in Study 2. Following each instruc-
tional phase the subjects took a six item test. These tests always contained
two items from each of the three tasks (Ql’ CZ’ and C3). After undergoing the
three training phases and completing the three tests, the 172 trainees were asked
to return one week later to take a final six item retention test. Of the
172 original subjects, 167 returned for this test. In all cases, items were scored

dichotomously, either correct or incorrect.
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Results

The five latent class models used in studies 1 and 2 were employed to
assess the congruence of the prerequisite relations validated psychometrically
and instructionally. Statistical comparisons were made between the models to
arrive at a preferred model in the same manner used in studies 1 and 2. The
nmodel testing was conducted for all possible cross—-classifications between
Ql’ Cz, and C3 on each test taken by the subjects with one exception. This
was the case of the C2 - C3 task set onthe test following Ql instruction.

This specific cross-classification was of no interest since no exposure to C,
or c3 had occurred.

The observed response patterns for all the various cross-classifications
are given in Table 16, The cross-classifications for the subjects following
training in Qi suggest the by now familiar hierarchical ordering between
the quadratic and cubic tasks. Note the large numbers of trainees passing the
two Q1 items and failing both the C2 and C3 items. The cross-classifications of
the quadratics with the cubics following training in the cubics shows a marked
change in these numbers. Now the majority of individuals fall into the mastery
and nonmasterv latent classes. The 02 - C3 cross—-clas 1fications displayed few
trainees passing one task but not the other. This suggests that c2 and 03
are of the same domain.

The results of the model testing are presented in Table 17. Following
training in Ql' the model testing revealed that the quadratics and the cubics
were of different prerequisitely ordered domains. This was indicated by
model HS being the preferred model. The same relationships held following
training in both C, and C,. The C, - C4 cross~classification following training
in the cubics suggests that the two tasks were in the same domain but of differ-

ent difficulty levels. This is indicated by model H2 being the preferred

o —— i B s e
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model. It is apparent that the prerequisite relations discovered in Study 1
were validated instructionally.

The findings from the test taken one week later are also presented in

Table 15. The chi squares and the preferred model for the two quadratic and

l cubic cross-classifications indicate that the prerequisite relations between
these two tasks was not lost. Quadratic and ruhic tasks form tuo hierarchic-

l ally ordered domains. The one anomaly that occurred in this study resulted
from the analysis of C2 and C3 on the retention test. From Table 14, this
cross-classification suggested that C2 and C3 were hierarchically arranged in

two domains. his is indicated by the preferred model HS.
Two path analyses were conducted. The first examined generalizaticn and
transfer effects involving Ql and C2 skills. The Ql skill was examined immediate-
ly following Q1 training. By contrast, the 02 skill was studied at two points in
time. Time 1 occurred immediately after Ql training and time 2 followed C2
training. The analysis also examined the generalization.onl to 02 at time 1 and
! the generalization of C2 at time 1 to C2 at time 2. Generalization was studied
to facilitate the separation of generalization effects from transfer
effects. The association between Ql and 02 can be conceived of in terms of two
components, a generalization component and a transfer component. In the path
analysis the transfer component was represented by the direct effect of Q1 on

02 at time 2. The generalization component was represented by the indirect effect

of Ql on C2 at tine 2. This indirect effect was composed of the direct effect of

i Q1 on C, at time 1 and the direct effect of C, at time 1 on C, at time 2,

2 2
i ' Table 16 summarizes the model testing for the first path analysis. The
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equations shown in the table indicate the effects represented under each model.
The first four models deal with effects on C2 assessed at time 2. The equation
for Hl indicates that the natural logarithm of the odds of a passing as opposed
to a failing response on the C2 item at time 2 is a function only of a parameter

representing the general mean of the log odds for the C2 item. Thus, Hl asserts

no effects on C,. The equation for H2 represents the log odds for C2 at time 2

as a function of the general mean and the main effect for Ql' Thus, H2 asserts

3 asserts that C2 at time 1

affects C, at time 2., Thus, H, represents generalization of C, at time 1 to C
2 3 g 2

at time 2. The equation for H

that Ql affects C2 at time 2. The equation for model H

2

4 asserts that Ql affects both C2 at time 1 and C

at time 2 and that C2 at time 1 affects C2 at time 2.

2

The four models in Table 16are hierarchical. Models H2 and H3 are hierar-

chical with respect to Hl and H4 is hierarchical with respect to H HZ’ and H

1’ 3

Statistical comparisons for the models eventuated in the selection of H4 as the
preferred model. This model asserts that Ql affects C2 at time 2 and C2 at time 1
affects C2 at time 2. Thus, model H4 supports the occurrence of transfer from

Ql to C, at time 2 and generalization from C2 at time 1 to C2 at time 2.

2

Although generalization did occur, it cannot be linked directly to the
learning of QI' Model HS asserts independence between Ql and C2 at time 1. This
model indicates no effect of Ql on C2 at time 1. Thus, Ql learning cannot be
regarded as responsible for performance at time 1. The observed lack of generaliza-
tion from the subordinate task Ql in the quadratic domain to the superordinate task

C, in the cubic domain'is consistent with the findings reported in Study 2.

2

The second path analysis examined generalization and transfer effects for tasks

C2 and C3. Roth task 02 and task C3 were assessed after C2 training at time 2.

In additicn Cj waz acces-ed after C3 training at time 3.

The second analysis examined transfer represented by the direct effect of
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C2 at time 2 on C3 at time 3 and generalization represented by the indirect
effect of C2 at time 2 on C3 at time 3, This indirect effect was reflected in

the direct effect of C2 at time 2 on C, at time 2 and the direct effect of C

3 3

at time 2 on C3 at time 3.

Results of the second analysis are shown in Table 17. The five models tested

are the same models examined in the first analysis. As in the first analysis,
model H4 was preferred. However, in contrast to the first analysis, model HS
did not afford an acceptable fit for the data. This means that the hypothesis
that at tigme 2 C2 and C3 were independent had to be rejected. The results

support the assumpticn that C2 generalized to C3 at time 2. Accordingly, the
preferred model indicated transfer from C2 at time 2 to C 3at time 3 and
generalization in the form of an indirect effect of C2 at time 2 on C3 at time
3. This indirect effect involved generalization from C2 at time 2 to C3 at
time 2 generalization from C2 at time 2 to C3 at time 3.
Discussion

The results of Study 3 support the hypothesis that prerequisitely ordered
relations validated psychometrically will be congruent with prerequisitely
ordered relations validated instructionally. The prerequisite ordering of Q1

and C2 and Ql and C, were maintained at each training phase of the study.

3
Furthermore, the results afford no support for the differential forgetting
hypothesis., Prerequisite ordering prevailed for the Ql - C2 and Q1 - C3 task

sets during retention as it did during the training phases of the study. How-

ever, from the response patterns for the retention data in Table 14 it seems

that forgetting occurred pyt mainly for transitional individuals. The trainees

in transition for the C, - C, cross-classification on the test following
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02 and C3 instruction shifted to nonmastery classification on the retention
test. Thus, forgetting occurred in the order in which learning occurred.

The results also provided support for the congruence of the positive
effects hypothesis under psychometric and instructional validation conditions.
There was a strong relationship between each of the quadratic and cubic domain
items examined under the psychometric and the instructional approach.

The examination of generalization and transfer within and between domains
provided information about how positive effeccts occur in hierarchical sequences.
The present results indicate that positive effects between domains result from
transfer. As Gagné‘(1977) suggested, mastery of a subordinate skill can facili-

tate the learning of a superordinate skill. By contrast, the results within

domains indicate that positive effects can occur both as a result of generalization

and transfer.

The fact that transfer taskes place between hierarchically ordered domains
indicates that providing instruction in a subordinate skill can be beneficial.
Nonetheless as pointed out in the discussion of study 2 there are advantages
to initiating instruction at a superordinate level as opposed to a subordinate
level. VWhen instruction can be initiated at the superordinate level, downward
generalization can occur. If trainees fail to profit from superordinate
instruction, subordinate instruction may be provided with the expectation that
transfer will occur.

In the case of within domain instruction, the present results also favor
initiating instruction at the top of the domain. As the results of Study 2
show, dounward generalization can occur within a domain. Nonetheless, if the
individual, for any reason, cannot profit from instruction initiated at the
higher levels in a domain, then instruction may be initiated at a lower level

with the expectation that both generalization and transfer will occur.,
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Conclusion

The psychometric and instructional validation studies reported above have
a nunber of implications regarding the advancement of knowledge about hierarchi-
cal sequences. The present findings provided empirical support for the idea
of hierarchically ordered domain structures as opposed to the idea of hierarchi-
cally ordered tasks. The notion of domiin structures raises new questions about
generalization and transfer within hierarchical sequences. Whereas in the
learning hierarchy model the major focus of research was on positive transfer
between hierarchically ordered tasks, in the domain structure model the
focus is on generalization and transfer both within and between domains.

The inotructional validation findings reported here support the view
that generalization and transfer may occur within domains. In addition they
indicated that downward generalization and upward transfer may occur between
domains. However, they failed to provide support for the assumption that
upward generalization may occur between hierarchically ordered domains.

The findings regarding generalization and transfer within and between
domains have important implications for training. Specifically, they suggest
the desirability of targeting training ahead of the trainee's current level
of functioning rather than at the current level of functioning. For many
learners, training may profitably begin at the highest level in a domain
rather than the lowest. Moreover, training may be initiated to advantage in
a superordinate rather than a subordinate domain.

The findings on generalization and transfer suggest a learning process
making use of something like the phenomena of top-down and bottom-up processing
(see, for example, Anderson, 1980). By starting at a more advanced level

than the level of current functioning, the individual is afforded the opportunity
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of conceptualizing simple problems as special cases of complex problems (top-
dovn processing). The capability to accomplish this is apparent in the downward
generalization that was observed to occur in the instructional validation
stuides. By contrast, when instruction is initiated in a subordinate domain,
top-down processing does not occur. The familiar problem of not being able to
see the forest for the trees is revealed as evidenced by the absence of upward
generalization.

As indicated earlier, there are undoubtedly limits with respect to how far
ahead one can skip in a domain structure. As a consequence, progress through a
hierarchical sequence may be thought of as combining bottom-up and top-down
processing. In all likelihood the trainee uses top-down processing to
acquire skills representing a subset of domains and then uses bottom-up
processing to progress to a higher level subset of domains. As suggested
previously, the determination of those factors affecting the degree to which
skipping ahead is feasible represents a high research priority.

The present reserach has implications with respect to reserach strategies
regarding hierarchical sequences as well as with regard to the advancement of
knowledge about such sequences. As implied at the beginning of this article,
although the notion of hierarchical sequences has been widely accepted for a
long time, little is known about the hierarchical structure of knowledge. There
is an obvious need for a rapid increase in information about the structure of
knowledge in such areas as academic subject matter fields and technical
specialties. The findings of the present research indicating the congruence of
results for psychometric and instructional validation studies suggest the
feasibility of employing the psychometric validation approach as a tool for

gaining information about krowledge structures in a rapid and efficient manner.
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One possible way to increase information about knowledge structures
dramatically would be to link psychometric validation to test development.
Bergan (in press) has suggested the need for a new kind of assessment that would
reference examinee performance to position in a set of paths defining a know-
ledge structure. The present research sugzests that path referencing would have
the advantage of providing information that could be used to make predictions
regarding gencralization and transfer in hierarchical domain structures of the
sort that might be used in instruction. Psychometric validation used for pur-
poses of test development could provide the basis for hypotheses to be investi-
gated using instructional validation techniques. The instructional studies in
turn could provide information regarding the validity of domain structures

determined psychometrically.

RN - 3" S ———
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Table 1

Domain Problcnms
Term Transposition X/A = B
I X + A+ B =
Distributive Property N(X+R) = 2
! "A(X+B) = D
c
Factoring NX + RX = Y

(NX + RX)Y = Z

lln each case the task was to solve for X.

Sample Problems From Hypothesized Donains !

C




Task A
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Table 2
Cross-Classification of Two

Hypothesized Tasks

Task B

1 2 3
1
2
3




. ot i st ¢
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Table 3

‘iodels Used in Establishing Item Domains

The E's connected by curved lines indicate cells constrained to be
equiprobable. The I's indicate cells for which the hypothesis of
independence prevails. The X's indicate cells reflecting response

pattems associated with specific latent classes.

T
q Hy H, Ha
B B
1 2 3 1 2 3 1 3 1 3
TS
E|E I 1 X p:/LE 1 X311 1 X |1}1
el I é/ N
2 EJE|TI A 2 X rE A 2 EJ|E|I A 2 1 |I}1
T {17 ~T
EJE|I 3 E|E|X 3 E|E|X 3 1 ]1}x
\J
H, Hy H, Hg
B B B B
1 2 3 1 2 3 1 2 3 1 2 3
1 xflt |1 1 x {1 |1 1 X |1}t 1 x 1|z
2 1 {x |1 A 2 1lxl1 A2 X|1|1 A 2 1 {r1|1
T —T
3 E|E|X 3 1|1 X 3 E|E|X 3 x|x|x
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Table 4
Chserved Cross-Classifications for the Terz-

R .1
Trensposition Domain

Pesponszs Patterns Cross-Classifications

TasXks i
B AL-l  Al-£22 Al-12 M -A2 M- A2 -2 |
i
1 65 72 69 82 99 97 |

2 4 2 2 12 2 22

3 6 1 4 9 2 1€

1 14 22 28 14 16 6

2 12 12 4 13 10 | 10

3 12 4 6 8 .9 10

1 24 19 38 17 20 10

2 19 40 20 29 14 22

3 161 145 146 133 145 124

The letters in the letter-number combinations labeling the columns below .
the cross-classifications heading indicate addition-subtraction (A) or
nultiplication-divison (1) problems. The numbers refer to the number of

steps required for problem solution.




- Response

Patterns

A B

ro
NS

1.

Table 5

Observed Cross-Classifications fer the Factoring-Distributive Property uoauwaw

Cross~-Classifications

F4-D4 F5-D3
F4-D3 F4-DS5

F5-D5
F5-D4

F3-F5 F3-D4 F4~F5
F3-D3 F3-D5

F2-F4 F2-D3
F2-T3 F2-T5 F2-D4

F2-D5
F3-F4

160 157 159 144 151 154 169 169 150 161 166 175 156 168 175 159 172 185 152
2 6 1 11 18 16 11 2 8§ 11 12 1 3 6 10 3 4 3 17
1 0 3 15 25 41 0 11 122 22 33 7 11 20 26 8§ 18 23 1

11 13 15 10 8 5 3 14 12 8 6§ 15 16 9 8 19 12 13 8

(=)
ot

10 6 5 9 5 6 6 2 5 3 5 3 4 3 5 5 13

0 12 11 15 9 32 14 13 17 11 32 14 14 0 30 14 9 25 13

~t
&

21 14 12 19 14 8§ 24 18 4 8

LV

9 13 28 9 4 4
7 6 ] 2 7 14 12 6 7 6 3 26

s
w

17 20 5 11 8 9

97 90 90 93 89 50 &8 &0 93 B> 54 83 80 5 49 82 77 56 79

Letters in the cross-classification columns indicate factoring (F) and distributive property (D)

Numbers refer to the number of steps required for problea solutien,

D3-D4

D3-D5
D4-D5
161 162
8 6
L 0
19 26
4 13
11 17
31 23
31 24
51 46
problems.




Table 6

Chi-squared Tests for the Term-transposition wosm»ﬁw

Tasks %, i :m :N. I :w. H, i

A 5 = p 2 ?  p w? b 2 op 2 p “ p ¥ p
ALY 200.65 <.01 19.04 <.01 1.10% <.90 .29 <,90 1.19 <.30 .16 <.90 .87 <.75 .28 <.75
AL~A2 251.78 <.0L 73.48 <.01 10.92 <.025 9.71 <.01 10.94 <01 1.38% <,25 7.73 <.025 .09 <.9C
Al-:2 237.56 <.01 66.65 <.01 29.12 <.01 6.73 <.05 29.14 <.01 2.63% <,25 5,75 <.10 07 <.90
BTV 197.55 <.01 15.32 <.01 3.36% <.05 1.93 <.50 3.37 <.25 1.35 <.,25 3.27 <.25 .10 <.90
Hl-12 323,54 <.01 30.58 <.01 2.58% <.50 .06 <.175 2.59 <.50 04 <.90 1,07 <.75 .01 <.90

=112 203.97 <.01 15.73 <.01 6.69 <.10 J41%* <.90 6.50 <.05 0. <.99 6.70 <.05 .19 <.75
lIve letters in the letter-number combinations used in designating task pairs indicate the addition-subtractions (A) and

w acwnwvwwnmnwouuaw<wm»onﬂzv dimensions. Numbers refer to the number of steps required to achieve problem solution.

1

The degreces of frcedom for il

v

Lo

o

(¢}

through I, are as follows:

5
1L 2
:u. 1
H, 2
H 1

(%]

Asterisks indicate preferred models.




Table 7
Chi-squared Tests for the Factoring~distributive Property uos.ﬂbw

Tasks H mH H, :w. H, N mb Hg

a B Xé P xm P X2 p xN D MN P xm P HN o] xN p
D3-F2 |305.52 «<.01 1.6086% «<.75 .33 <.975 .28 <.90 .34 <,90 | .02 <.90 .32 <.90 12 <.75
D3-I'3 [345.09 <.01 6.4418% <.10 6,51 <.10 | 1.66 <.50 | 6.51 <.05|1.07 <.50| 4.76 <.l0 1.47 <25
D3-F4 {337.67 <.01 | 11.924 <.01 | 10.35 <.025 | 3.52 <.25]10.39 <,01]1.9%2 «<.25 67% <75 1.00 1.00
D3-F5 |382.15 <.01 | 29.4 <.01 | 30.40 <.0l1 | 3,63 <.25[32.02 <.01L| O 1 §11.97 <.01 2,10 «<.10
D3-D4 [323.14 «<.01 | 13.93 <,01 | 25.33 <.01 |11.71 <.01|25.34 <.01|4.27*% <.05{25.346 <,01 | 11.28 <01
03-D5 1285.98 <.01 m 49.99 <.01 15.28 <.01 |13.55 <.0115.35 <.01{2.25*% <.25 9.60 <.01 9.59 <.01
D4-F2 ~NON.Ob <.01 m 20.939 <,01 2.06% <.75| 2,02 <,50| 2.07 <.,50{1.18 <.50; 1.53 <.25 .08 <.90
,D4=T3 1340.53 <.01 v 10.929  <.025 2.69% <.50 .86 <.751 2,69 <.50 0 1 1.03 <.75 .69  <.50
wo,..-? 320,66 <.01 | 1.85072% <,75 | 4.54% <.25] 2,08 <.50| 4.56 <.25[1.55 <.25 15 <.95 | 4.00 1.00
m»1Mw._umu.mm <.01 | 4.79% <.25 | 20.33 <.01| 1.92 <.5020.88 <.01}{ .67 <.50; 6.66 <.05 .38 <75
D4=25 [325.15 <.01 % 27.57 <,01 | 12.39 <.01 11,21 <.01{12.43 <.01 .86% < ,501 11.41 <.01 8.74 <.01
D5-T2 |234.24 <.01 M 55.13 <.01 5.32% <.25] 2.10 <.50| 5.32 <.10| .02 «<.90}| 5.32 <.1l0 2.00 <25
05-r3 | 310.60 <.01 m 59.904 <0l 3.14*% <,50 | 3.14 <.,25) 3,14 <.251{1.83 «<.25] 3.15 «<.25 2.20 <.25
p5-F4 | 305.29 <.01 M 12,4176 <01 2.29% <.75| 2.06 <,50) 2.29 <.50| .73 «<.50] 2.26 <.50 1.97 <25
D5-F5 [387.10 «<.C1 m 41.264 <.01 6.35% <,10| 1.12 <.75] 5.35 <.05}1.12 «<.50 .45 <.90 30 <75

1. The letters in the tasik descriptions refer to factoring (F) and distributive property (D) problems. The

numbers indicate number of steps to problem solution.

. indicates

preferred model,




Table 7 (coantinued)

Tasks i, mw q mm. U, mw H, H
A B .2 .2 2 .2 2 o
@ X P X p X p X p %2 p ! p 2 P X2 p
F2-73 Tub.mb <.01 | 16.06 <.01 2,81*% <.50 1L.66 <.50 2.82 <.25 10 <1 2.80 <.25 .30 <.75
r2-T4 mow.mb <,01 | 22.68 <.01| 12.63 <.01| 12,50 <.0L| 12,63 <,01 |4,58% <,05 | 11.85 «<.01 |10.36 <.0l
_

¥2--F5 420.47 <.01 | 40.26 <.0l1 | 23.67 <.0l 77 <751 23.68 <.01 | .06 <.%0 | 17.24 <.01 06 <.90
r'3-r4 427.12 <.01 7.17% <,01 | 23.69 <.01| 20.09 <.,01 | 23,70 <.0l |5.92% <,025| 23.70 <.01 |18.25 <.01l
F3-r5 1384.90 <.01 | 15.13 <,01 | 19.84 <.01 1.17 <.75| 20.18 <.,01 .52 <.50 7.38 <.025 .02 <.90
T4-F5 |441.56 <.Cl 18.41 <.01 ] 12.40 <.01 2,63 <.50 | 12.42 <.Q1 (1.72 <.25 1.44% <,50 11 <.75
I
A
' The cegrees of frecdom for the models are: H 5

mH 3

H, 3

:N 2

1, 2

1

mu 1

H, 2

H 1
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Table 8
Observed Cross-classifications for the Term-transposition

and Factorinz-distributive ?roperty Domains

Response Pattemmns Cross-Classifications

Tasls

A3 MR AN OS5 YT YE "N
R 74 74 75 74 75 74 75
s S 0 1 0 0 0 1 0
3 3 1 0 0 1 0 0 . 0
2 3 32 36 37 32 33 35 33
2 2 4 1 0 3 2 1 2
2 3 2 1 1 3 3 2 3
3 3 64 84 929 57 68 82 94
3 =2 30 20 43 28 17 19 9
3 3 110 100 62 119 119 103 101
Tasks

A B !-!1-03 2-11—D 4 ):1-::5 }Zl—Fz l{l-!-‘3 HI-F 4 ufrs
i 3 97 102 103 97 100 101 103
1 2 2 1 0 3 1 1 0
2 3 4 0 0 3 2 1 0
2 32 26 30 33 28 29 32 32
e 2 5 3 1l 4 4 1 1
& 3 4 2 1 3 2 2 2
3 3 47 62 75 38 47 58 67
s 1 27 18 42 24 14 19 10
3 3 105 99 62 117 118 102 102

R0 @
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Table 8 (continuad)

Pesponse Patterns Cross-classifications

Tass

A 3 A2~33 AZ—D4 AZ—DS Az—?z AZ—F3 AZ—F4 AZ—FS
1 1 107 111 112 101 1056 105 107
1 2 3 1 0 5 1 1 2
1 3 3 1 1 7 6 6 4
2 1 32 40 44 33 36 41 42
2 2 11 9 5 12 7 4 2
2 3 11 5 5 9 11 9 10
3 1 31 43 55 29 34 44 53
3 2 20 12 38 14 11 16 7
3 3 99 95 57 107 105 90 90
Tasks

A B I:Z—D3 )E—DA Iiz—-D5 Iﬁ—FZ 15—F3 }5—F4 }b—F
I | 1238 134 133 126 131 133 134
1 2 2 1 2 5 2 1 1
1 3 5 0 0 4 2 1 0
2 1 15 19 21 14 15 15 17
2 2 2 3 2 4 3 2 2
2 3 9 4 3 8 8 9 7
3 1 27 41 57 23 30 43 51
3 2 30 18 39 22 14 18 8

3 3 99 97 60 111 112 95 97




Tahle 9

owunmpcuunmﬂomnmmonnwonnommnowmmm»mﬁoun»opomn#oamnﬁnnnmavamHnwovmnamwnnonwnwluumnuwwcnw<o
: T . : " Prcperty Domains

. 4 . . -
H Hy H i, Hy H, B, He

o

2 dfep | X0 df. g X5 dufop, X° df. p X5 df. p [ X° dif. p [ X° duf. p [X° duf. p

Al-D3  245.08 5 <.01 [153.54 3 <.0l 41.61 3 <.01 9.74 2 <.0l} 41.64 2 <.01 3.9n 1 <.05| 14.50 2 <.01| 1.92% 1 <.25

&al-24 282,59 5 <.01{17¢.62 3 <.0Y 84,55 3 <.0lf{ 7.97 2<.,025| 34.63 2 <.,01| .21 1 <.75] 43.40 2 <.01l| 1.03* 1 <,50
Al-D5 234,283 5 <.01]23%.99 3<.0l 73.99 3 <.01(23.22 2 <.0l| 22.70 2<,0L}{0.00 0 - |30.03 2<.01| 0.00%*(Q0 =
Al-F2 255,62 5 <,01 |137.93 3<.0l 41.75 3 <.01{11.49 2 <,01; 42.54 2 <,01|3.40 1 <.10; 11.34 2 <.01 32% 1 <,75
Al-F3 274,32 5 <.,01 {150.83 3<.0l 65.96 3 <.0l| 4.45 2 <.25| 68.62 2<.,01{0.00 0 - | 34.69 2 <.01| 0.00%¥ 0 -
Al-F&4 280.64 5 <.01 |170.35 3<.0l] 83.33 3 <.01| 7.70 2 <.025| 87.23 2 <.01| .42 1 <.75} 44.08 2 <.01| 1.73% 1 <,25
,A1-F3 315.31 5 <.01 1179.20 3<.01J114.91 3 <.01lf .35 2 <.90117.96 2<.,01}0.00 0 - ! 84.37 2 <.01| 0.00*0 =~
1x-23 250.24 5 <.01 | 86.20 3<.01} 25.51 3 «<.01} 7.09 2 <.05} 25.52 2<.01|4.01 1 <.05! 6.20 2 <,05| .72*% 1 <.50

11~-D4 .. 318.08 <,01 |134.81 3 .01} 51.46 3 <.0l} 3.63 2 <.25| 51.48 2 <.,01 39 1 <.75! 26.51 2 <.01 JI1% 1 <50

(%3]

i-D5 286.43 5 <.01 |199.83 3 <.01]47.55 3 <.01|18.63 2 <.01}49.95 2<.01!'0.,00 1 1 j13.85 2 <.01; 0.00%11 1

ul-F2  279.96 5 <.01 | 77.23 3 <.01426.18 3 <.01f 8.91

N
A
.
o
(XS]
[%4]

26.18 2<,01}2.88% 1 <,10| 3.25% 2 <.25| .07 1 <.90
1i-F3 326.77 5 <.01 | 94.16 3 <.01144.45 3 <.01} 3.51 2 <.25| 44,45 2<,01]2.39 1 <.25|19.75 2 <.01 91% 1 <,50

Ui-F4 319.03 5 <.Cl |124.34 3 «<.01}59.12 3 <.01} 9.77 2 <.0l; 60.16

|84

<.01}1.02 1 <.50; 22.60 2 <.01| .l4*%1 <.75
21-F5 368.08 5 <.01 |143.06 3 <.01{84.07 3<.,01] 3.09 1 <.,25|86.57 2<.01}0.00 0 - | 49.61 2 <.0l| 0.0C*1 1

£2-D3 276.43 5 <,01 | 57.54 3 <.01{13,67 3 <.01} 2.07* 2 <.50] 13.67 2<.01 45 1 <751 2.39% 2 <.,251 0.00 1 2

£2-24 338.43 5 <.01 1101.86 3 <.0140.79 3<.01 40 2 <.901 40.79

ro

<.01 .27 1 <.75] 18.69 2 <.01 15% 1 <.75

A2-DS 266.183 5 <.01 |155.%4% 3 <.01}42.17 3 <.01j18,70 2 «<.0l| 7.93 2<.05{ 3.73 1 <.10f 4&.45*% 2 <,25} 1.30 1 <.50
- i
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MN d.f. p
264.70 5 <.01
308.47 5 <.01
291.12 5 <.01
328.79 5 <.01
302.80 5 <.01
365.06 5 <.01
277.69 5 <.01
312.90 5 <.01
362.28 5 <.01
344,26 5 <.01
387.86 5 <.01

86.26

133.92

26.01

09.21

88.00

d.f. p

3 <0l

3 <.01

18,94
40,61
57.29
87.38
12.32
22,78
! 22.56
5.92%
14.70
21.81

49,58

3 <01
3 <.01
3 <.01
3 <.01

3 <.01

3 <.01

3 <.01

Table ¢ (continued)

10.66
3.61
11.17
4.11

1.76

2.68

~

<.,25

iy

X% d.f.

18.96 2
40.61 2
57.70 2
87.75 2
13.07 2
22.81 2
4,12% 2
5.93 2
14.75 2
10.62 2

37.37 2

P
<.0l

<.01
<.01
<.01
<.01
<.01
<.25
<.01
<.01
<.01

<.01

B,
x* d.£. P
1.42 1 <.25
3,11 1 <.10
5.14 1 <.025
0L 1 <.95
2.70% 1 <.25
75 1 <.50
L 1 <.50
12 1 <.75
0L 1 <.95
06 1 <.90
2.41 1 <.25

mu

xn d.f. p

J3% 1 <50

B
xn d.f. p
6.08 2 <.05
13.87 2 <.01
17.03 2 <.01
43.90 2 «.01
3.36 2 <.25
10.74 2 <.01
6.23 2 <.05
1.06 2 <.75
6.61 2 <.05
14.16 2 <.01
37.64 2 5025

1.54% 1
J70% 1
+62% 1
.25 1

1.53% 1

2.83 1

1.04 1
.066% 1
84% 1

2.68% 1

<.25

<.25
<.10
<.50

<.50
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Table 10

Contingency Table for Study 1

g::i:gz:* Cross-Classifications

Tasks O’H O’H O’H Of'-‘ OfN CJ’N OfN Ofo O’\o O"\
R N N RN N
1 1 11 75 49 50 45 45 50 39 42 38 35
2 1 11 3 3 3 2 2 2 2 2 3 9
1 2 11 A 2 1 1 6 A 6 7 4 2
2 2 11 5 1 3 0 2 1 1 6 3 2
11 21 6 4 10 5 5 8 6 7 2 2
2 1 2 1 2 1 0 1 0 1 0 2 0 1
1 2 2 1 0 0 0 0 1 2 0 1 3 1
2 2 2 1 0 2 1 0 1 0 0 1 1 2
1 11 2 12 13 7 5 11 7 6 3 4 6
2 1 1 2 2 1 1 1 1 0 1 3 2 1
1 2 1 2 1 Q 1 0 3 0 1 2 2 1
2 2 1 2 1 1 2 2 0 4 8 3 0 0
11 2 2 4 31 30 42 86 22 36 3 11 14
2 1 2 2 0 2 3 3 5 5 5 0 2 0
1 2 2 2 5 8 8 9 6 10 9 5 6 7
2 2 2 2 83 85 83 87 89 87 91 116 122 120

* 1 denotes correct response

2 denotes incorrect response
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Table 11

*
Chi Square Tests for Study 1

| Cross " E E K s

i Classifications X1 ¢F P X', af X’ af p |X' df X% df b

/ g Q;-Q, 29.07 12 <.01| 6.23 4 <.25 8.81* 6 .25| 6.53 3 <.1 | 11.33 7 <.25

{ ' Q-C, | 180.84 12 <.01|17.58 4 <.01 | 63.83 6 <.01 2.49 3 <5 5.62% 7 <.75

| ! Q-C; | 159.48 12 <.01|12.68 4 <.01 | 54.67 6 <.0L| 3.22 3 <5 7.13% 7 <.5

| Q-C; | 306.49 12 <.01|36.37 4 <.01 |107.81 6 <.01| 4.20 3 <25| B8.11%7 <.5
Q-C, | 121.1 12 <.01|13.88 4 <.01 | 48.69 6 <0l 5.56 3 <25/ 7.08% 7 <.5
Q,~Cy 96.36 12 <.01 | 7.7% 4 <25 | 38.52 6 <.01| 4.84 3 <.25| 14.98 7 <.05
Q,-C, | 219.93 12 <.01,22.56 4 <.0L | 79.31 6 <.0L| 2.79 3 <5 5.72% 7 <.75

;; €,-Cy 16.70% 12 <.05 { 4.01 4 <.5 4.17 6 <.75| 4.49 3 <25| 12.51 7 <.1
¢,-C, 33.6 12 <.01| 8.57% 4 <.1 17.71 6 <.0l| 4.82 3 <25{ 5.41 7 <.75

! Q,=Cq 63.31 12 <.01| 8.70 4 <.1 19.39 6 <.0L| 1.05% 3 <.75| 14.39 7 4.05

*
Preferred model denoted by an asterick
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Table 12
An Example of the Feedback for the 3 Trials*

Trial 1
, X2+ X -6=0
: 1 2°3 4 :
Step 3: Simplifying X Jx yY=290 Put in locations 1 and 3 factors of
the equation the 1st term (X2) of the equation.
. 1 2 3 4
. X 3)(Xx 2)=0 Put in locations 2 and 4 factors of

the 3rd term (-6) of the equation.

X+3)X-2)=0 Between these locations go plus or minus
signs. Remember, you need to get a
combination of factors and signs that
cross-multiply to equal the equation
P you're solving.
1 2 3 b .
X+3)xXx-2y=0 To cross multiply: Multiply the elements
S~—— in locations 1 and 3, 1 and 4, 2 and 3,
M and 2 and 4, :
X2 +X~6=20 Collect terms and check to see if the
. result is the same as the equation.
L4
Trial 2 ’
: X2+ 5% +4=0
: 1 2°3 4
Step 3: Simplifying X+58)X-1)=0 Put in locaitions 1 and 3 factors of the
the equation 1st term (X”) of the equation at the end
. of step 2, and in location 2 and 4, put
, factors of the 3rd term (5). Between
! . these put signs. .
1 2 3 4 .
(X #5)(X -~ 1) = 0- Now cross multiply to check and see if
the two expressions are the ones you want.
To cross multiply: Add together the four
products obtained from multiplying the
terms in 1 and 3, 1 and 4, 2 and 3, and
2 and 4.
X2 +4X «5=0 Now collect terms and check to see if the
. result equals the equation at the end of
. step 2. E
Trial 3
. 2
’ X+3X.-4=0
[ 4
Step 3: + (X - =0
Simplifying the (x 4)£ 2
equation. .

*The dots ( E) signify that other steps, equations, and descriptions occurred before)
in between, and after What has been speicifcally illustrated.




~ Step 1

| Step 2

Step 3

SteR 4

SteE 5

Determining the
Number of roots

Factoring and
eliminating common
elements

Simplifying the
equation

Obtain roots

Check solution
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Table 13

Types of Rules and Strategies Supplied During

Instruction

X2+ 9X - 12 =0

3x2 + 3X - 4) =0

X2+ X -4=0

X+4)X-1) =0

[= N )
. ow

X+ 4
X -1

ta e
ion
t
£

3(-0)% + 9(-4)-12
48 - 48 = 0

312 + 9(1) - 12
12 - 12 = 0

ey

RS

The highest exponent in the
equation is a 2, therefore, there
are two roots.

A three can be factored out and
eliminated from the equation.

These are the two factored expe
expressions which equal
X2 +3X-4=0

The roots are -4 and 1.

-4 and 1, when substituted into the
equation, both set the equation
equal to 0.
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Table

14

Contingency Tables for Study 2

Response* Cross Clas- Cross Clas- Cross Clas- Cross Clas-

Patterns sifications sifications sifications sifications

for Train- for Train- for Train- for Train-

ing in Ql ing in Q2 ing in Q7 ing in Q6
Tasks BB' ,{,O Lo '_1_0 NERINE L8 e LWL o0
A A' B B' AA? L8 e .\/,O NI LWL ’_‘O o0 Hn
1 1 1 1 1211 20 1 2 11 13 8 15 10 10
21 1 1 o 0 0 2 0 0 2 o] 1 1 2 0
1 2 1 1 o 0 0 o 0 O 2 1 0 1 5 0
2 2 1 1 0 0 0 1 0 0 4 S 10 3 3 0
1 1 2 1 2 0 0 4 0 O 1 0 0 0 0 o
2 1 2 1 o 0 0 0O 0 O 0 0 0 0 0 0
1 2 2 1 1 0 0 1 c O 0 1 0 0 0 0
]

2 2 2 1 0 0 0 Yy o o 0o o0 1 0 0 o
1 1 1 2 7 0 1 2 0 0 1 2 1 0 0 6
2 1 1 2 1 0 o 6 0o O 1 2 0 0 0 0
1 2 1 2 o 0 0 0 0 O 1 0 0 0 0 o0
2 2 1 2 1 0 0 2 0 0 2 1 4 2 2 0
1 1 2 2 11 31 30 0 22 21 2 1 3 7 5 4
2 1 2 2 4 5 5 0 8 8 0 0 0 0 0 0
1 2 2 2 4 5 5 1 4 4 1 2 2 0 0 2
2 2 2 2 16 17 17 3% 37 37 29 29 27 29 31 36

*1 denotes correct responses

2 denotes incorrect responses




[

Truiuing 1

Training in

Tiwsning in

l‘rauuug in

Cross Clas-
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Table 15
Chi Square Tests for Study 2*

H H H H H
sifications , ! , 2 , 3 ;! 2 2
by Training )(L df p XL df p X[ df p )(J df p XI df p
*
Ql— Q2 63.38 12 ¢.01 7.12 4 <.25 23.38 6 ¢.01 6.00 3 <25 5.41 7 .25
Ql- C2 311.1 12 ¢.01 34.03 4 <.01 93.32 6 <.01 .27 3 <95 01* 7 >.5
U’—‘
Ql- Cl 295.6 12 <01 31.02 4 «¢.01 87.14 6 <.01 .29 3 <95 .007* 7 >.5
Q- Q, 18.33* 12 .25 7.39 4<25 11.37 6<.1 - 3 - -7 -
~ QZ- C2 209.4 12 <.01 15.72 4 <01 53.96 6 <.01 .19 3 <95 .01* 7 <.99
(4
QZ- Cl 198.6 12 <.01 14.29 4 <.01 50.43 6 <.01 19 3 (.95 .004* 7 <.99
Ql- Cl 13.61* 12 <.5 5.96 4 <.25 6.85 6 <.5 4.33 3 <.25 14.20 7 <.05
C2- Cl 62.00 12 <.01 9.50* 4 ¢.05 16.94 6 <.01 7.50 3 ¢.10 66.75 7 <.01
Q
Q,- C1 23.27* 12 .01 15.i0 4 <¢.01 16.87 6 <01 15.05 3 <.01 25.39 7 <«.01
Ql- CZ 50.00 12 <01 14.93 4 <¢.05 15.21 5 «<.05 .90* 3 <95 21.06 7 <.01
Qz- C2 34.56 12 <.01 10.01 4 <.05 8.57 6 4,25 .026* 3 <99 27.63 7 <01
o~
&)
2" Cl 43.57 12 <.01 1.75* 4 < _gp 10.82 6 «.1 .23 3 <,99 .03 7 <.,99

* preferred model denoted by an asterick




Response Patterns*
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Table

16

Contingency Tables for Study 3

Training in

Cross-Classifications

Training in Q6

Training in Q8

One week retention

Q test

Tasks AN B S A - 2T A = AR S
4B C R BT G sl B A ull B AR Al
1 11 14 11 74 51 51 75 55 48 65 52 51
2 11 2 1 0 0 2 0 0 6 3 3 3
1 21 0 0 4 3 1 0 1 1 0 0 1
2 2 1 0 0 0 0 0 1 1 2 0 0 0
1 1 2 5 3 2 8 8 17 19 14 6 9. 6
2 1 2 0 0 0 0 0 0 0 4 0 0 1
1 2 2 0 0 0 1 0 1 0 1 1 1 3
2 2 2 0 0 0 0 1 0 1 1 0 1 1
1 1 1 0 5 18 7 5 5 16 8 7 2 0
2 11 0 0 0 0 0 0 0] 4 0 0 0
1 21 0 0 5 1 3 0 1 1 0 0 1
2 2 1 0] 0 4 0 0 1 0 4 0 0 1
1 1 2 104 104 26 54 14 37 43 6 51 66 11
2 1 2 4 5 2 2 0 0 0 4 3 3 3
1 2 2 7 7 10 14 23 4 3 3 2 2 2
2 2 2l 36 36 27 31 64 31 31 65 29 28 83

*: 1 denotes correct response

2 denotes incorrect response
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Table 17

Chi Square Tests for

Study 3 *
H H H H H
Cross Classification 1 2 3 4 5
by Training 2 2 2 2 2 .-
X L df p X L df p X L df p X L df p X L 95 P

a0
= Ql—C2 1131 12 <.01{165.70 4 <.01[/396.80 6 <.01| 1.62 3 <.75] 5.69% 7 <.75
2o e
_"ed o
o Q —C3 1099 12 «<.01(152.30 4 <.01}{387.60 6 <.01} 1.33 3 «<.75| 1.89% 7 < 95
=
& Ql—C2 154.20 12 <.01| 42.94 4 <.01§y 74.19 6 <.01}| 29.47 3 <.01127.38*% 7 <.01
oD
E o Ql—C3 414.60 12 <.01| 48.17 4 <.01136.7 6 «.01 2.71 3 <.5 6.69% 7 <.75
o
ot
o C2—C3 127.70 12 <.01] 18.14 4% <01] 55.20 6 <.01} 16.63 3 <.01]14.37 7 «<.01
-
5 Ql—C2 293.50 12 <.01| 30.28 4 <.01]108.15 6 <.01 6.75 3 <.05 6.69% 7 <.5
o0
E e Ql—C3 325.60 12 <,01] 21.81 4 <.01]108.97 6 <.01 5.64 3 <, 25| 6.02% 7 (.5
i)
o CZ_C3 23.24 12 <.05 7.50%4 >.1 14,29 6 <.05 8.14 3 «.05111.26 7 <.10
L Ql—C2 453.50 12 <.01! 65.82 4 <.01]|161.68 6 «<.01} 10.77 3 <05] 7.71*% 7 <. 5
2 o

)
ﬁ c Ql—C3 635.00 12 <.01§ 91.66 4 <.01{240.70 6 <.01 9.71 3 <.05)11.37*% 7 ¢.10
g o
=
- CZ—C3 47.68 12 <.01| 13.70 4 <.01} 27.75 6 <.01 7.98 3 <.05] 9.34% 7 <. 25
c
O W

* Denotes preferred model
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Table 18

Positive Effects Models for Ql and C

2
2
Model Equations X L df p
H oC =3¢ 43.63 3 0.000
1 ij
¢ _ ,C_  _AC
H, ey = 87 + 87, 15.36 2 0.000
C c BC
= + 26. 2 .
H, o 5 8 8 | 80 0.000
C C AC BC
= + + .00% .
H, ®75y = B BT, t 8 3 0.00 0 1.00
B _ B
Hq o7y 8 1.55 1 <.25

In the equations, A represents Ql assessed at time 1, B represents C2

assessed at time 1, and C represents C2 measured at time 2. ¢Cij indicates the

natural logarithm that variable C will be passed as opposed to failed when variables

A and B are at levels i and j respectively ( i = 0, 1; j = 0, 1). The term

B~ refers to the mean of the natural logarithm of the odds that variable C will be
passed as opposed to failed for all values of variables A and B. The BACi indi~-
cates the main effect of A on the log odds that C will be passed rather than

failed when A is at level i (i = 0, 1). The other terms are similarly defined.

The asterick denotes the preferred model.
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Table 19

Positive Effects Models for C_, and C

2 3
2
Model Equations X L df P
C C
- . 0.0
Hy oy =8 49.93 3 00
H, €15 = 8¢ + gAC, 7.26 2 0.026
C c BC ;
= 26.8 2 0.000
H, oC =80 48 0
c C AC BC
=%+ + L41% <.
H, oC =B e B 4 1 75
H o8, = gB 63.47 1 0.000
5 i

In the equations, A represents 02 assessed at time 2, B represents C
assessed at time 2, and C represents C

defined as they were in Table 7.

measured at time 3.

3

The equations are

The asterick notes the preferred model.
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APPENDIX B

L o, S M. AT 0 -4




“ilulL—

Ql Instructions for Studies 2 and 3 Q1

The next phase of this instructional program will present the steps necessary to
solve for quadratic equations. Equations of this kind involve more than one
value for the unknown X. Your goal is to simplify the given equation into an
equation with separate expressions each containing an X. Each of these expressions
is used to attain a value for X.

STEP A
Determining
the number of
values for X

STEP 8B
Simplify

Xg>+ 6X +5=0 The highest exponent in the initial
equation refers to the number of X

%zT’______-——---.~\\\\\E;va1ues we are solving for.
+6X+5=0 There are 2 values for X since the

highest exponent in the initial equation

is 2.

( ) ) =0 Set up your sets of parantheses.

1 2.3 &

(x J&x _)=0 Put in locations 1 and 3 factors of the
1st term (X2) in the equation.

1 2. .3 4

(X 1)(x 58) =0 Put in locations 2 and 4 factors of the
3rd term (5) in the equation.

1 2,3 b :

(X@1)(X®S) =0 Between these locations go plus or
minus sings. Remember, you need to get
a combination of factors and signs
that cross multiply to equal the equa-
tion you are solving.

1 2.3 &

(X +1){X +5) =0 Check to see if these two expressions
cross multiply to equal the equation

= you are solving.

1 2.3 &

(X+T1)X+5)=0 To cross multiply: multiply the elements

é“-====—”§ in location 1 and 3, 1 and 4, 2 and 3,

X*, 5X 1X, 5 and 2 and 4.

X2 +5X+1X+5=0 " Add these four multiplicative products
together.

X2 +6X+5=0 Collect terms and check to see if the

result is the same as the step A equati
I[f the result does not equal the sten A
equation, you must try other combina-
tions of factors or signs in the
parenthases (return to Step &).




— a

Solve for the
X values
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X+ 1 =0 and
X+5=0

—
><
+
—
A
[]
—
]
o
'

—

STEP D(optional)

Check your
solution

(-1)2 + 6(-1) + 5 = 0
14+(-6)+5=0

(-5)2 + 6(=5) + 5 = 0
25 + (-30) + 5= 0

Q!

If the result equals the step A equation,
solve for the X values by setting each
expression equal to 0.

The X values are then obtained by solving
each of these equations. Thus, the two

values that will make the original equatio:

equal 0 have been found.

Thus the two values for X in the equation

are:
X = -1

X = -5

You can check to see if these are the
correct values by inserting each of them
into the original equation and checking
whether or not the solution to the
equation is 0.
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page 3

Now you try to solve the equation:

x> 45X+ 4=0




Page &4

Step A

Determine the
number of
values for X

Step B

Simplify the
equation

Step C
Solve for

X values
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é:j""———__-_-_-_.~..-“~\=‘ qQl
+5X+4 =0 There are 2 values of X to solve for, since

1 2 3 4
( ) ( ) =0

1 2 3 &4
(X+4) X+1) =0

<< N\
1 2 3 4
(X+4) X+1) =0

2

XS+ X +4X+4 =0

X2+ 5K+ 4 =0

X+64=0
(X+6) = & = 0-4

X = -4

X+1=0
(X+1) -~ 1 = 0-1

X=-1

2 is the highest exponent.

Set up your parentheses.

Put in locations 1 and 3 factors of the
1st term (X2) {n the equation, and

in locations 2 and 4 factors of the 3rd
term, (4) of the . equation. Finally,
put some signs between these locatioms.
Remember, you need to get a combination
of factors and signs that crossmultiply
to equal the equation you're solving.

Crossmultiply to check and see if the
two expressions are the ones you want.
Crossmultiply and add together the four
products obtained from multiplying the
elements in location 1 and 2, 1 and 4,
2 and 3, and 2 and 4.

Collect terms and check to see if the
result equals the Step A equation. If
the result does not equal the equation in
Step A, try other combinations of factors
or signs in the parentheses (return to the
beginning of Step B).

If the result equals the Step A equation,
solve for the X values by setting each
expression equal to 0, and then solving
each equation for X. Thus, two values
that will make the original equation
equal to 0 have been found.

The 2 values for X are:

X = -4
X = -1
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page 5

Now, you try to solve the following equation:

X2 + 7% +12 =0




Page 6

Here is the solution:

2

-106~

X"+ 7X+12=0

1 2 3 4

X+46)X+3 =0

2

l X"+ 3 +4X+12=0

X+4=0

X = -4

X+3=0

X=-3

Ql




J——

Q,
Step A

Determine the
number of values
for X

Step B

Factor out
common elements

Step C

Simplify the
equation
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Q2 Instructions for Study 2

The next phase of this instructional program will present the

steps necessary to solve quadratic equations. Equations of

this kind involve more than one value for the unknown X. Your

goal is to simplify the given equation with separate expressions,

each containing an X. Each of these expressions is used to attain

a value for X.

3X2 +3X-18=0 The highest exponent in the initial
equation refers to the number of X

QD/_,,,—————-____~___-\\svalues we are solving for.
3X¥+ 3k~ 18 =0

There are 2 values for X since the
highest exponent in the initial
equation is 2.

3(X2 +X-6) =0 Since there is a highest factor greater
than 1 common to all the terms of the
equation, this number can be factored
out of the equation.

3(X2 +X-6) _0 Dividing both sides of the equation by
3 3 this factor leaves you with an equation
that is simpler to solve.

X2 +X-6=20 If you solve this simpler equation you
will also have the values that solve
the initial equation.

( )( Y =0 Set up your sets of parentheses.

1 2 3 &

X )X =0 Put in locagions 1 and 3 factors of the

1st term (X°) of the simpler equation.
1 2 3 4

X HE 2)=0 Put in locations 2 and 4 factors of the

3rd term (-6) of the simpler equation.
1 2 3 b :

X+3HEX - 2) =0 Between these locations go plus or minus
signs. Remember, you need to get a
combination of factors and signs that
cross multiply to equal the equation
you're solving.

1 2 3 4
X+3)X-2)=0 Check to see if these two expressions

cross multiply to equal the equation
you're solving.

L e de WAL Rt B i e
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Step D

Solving for

X

Step E
(Optional)

(X+3)
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<N
1 2 3 L
X+3)X -2
SS——

[]
o

X%, -2X, 3X, -6

%2 + (~2X) + 3X +(=5) = 0

X"+X-~6=20

X+3=0
and
X-2=0

3(-3)2+3(-3)-18 = 0
3(9)+(~9)-18 = 0

27 - 27 =0

3(2)%+3(2)-18 = 0
3(4)+6-18 = 0

12 4+ 6 - 18 = 0

Q,

To cross multiply: Multiply the elements
in location 1 and 3, 1 and 4, 2 and 3,
and 2 and 4,

Add these four multiplicative products
together.

Collect terms and check to see if the
result is the same as the simpler
equation.

If the recult does not equal the equation
at the end of Step B, try other combinations
of factors or signs in the parentheses
(return to the beginning of Step C).

If the result does equal the equation at
the end of Step B, solve for the X values
by setting each expression equal to 0.

The X values are then obtained by solving
each of these equations. Thus, the two
values that will make the original
equation equal 0 have been found.

Now insert each of these values into the
original equation and check to see
whether the answer to the equation
equals 0,

e ey ey ——— A .
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Now you try to solve the equation:

?.X2 + 8 -10 =0
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page 4

Step A

Determining
the number of
values of X

Step B

Factor out
common
elements

Step C

Simplify
the
equation

Step D

Solve for
the X
values

o N

2+ 8X - 10 =0

2(x% + 4X - 5)

=0
2
2(X° + 4X -5) _ 0
2 =2
X2 44X ~-5=0
( )( ) =0
1 2 3 L
(X+5)(X-1) =0
PN
1 2 3 L
X+5E-1) =0
~——
2

X" =X+5-5=0

X*+4X-5=0

X+5=0

(X+5 -5=0-5
X = -5

X-1=0
X-1)+1=0+1
X = +1
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Q,

There are 2 values of X to solve for,
since 2 is the highest exponent.

Factor out any highest number common to
all the terms in the equation.

Dividing both sides of the equation by
this factor leaves an equation that
is easier to solve.

Set up your parentheses,

Put in locatigns 1 and 3 factors of the
first term (X") of the equation at

the end of step B , and in locations 2
and 4 put factors of the 3rd term (5).
Between these locations put signs.
Remember, you need to find combinations
of factors and signs that cross multiply
to equal the equation you're solving.

Now cross multiply to check and see if
the two expressions are the ones you
want. To cross multiply: Add together
the four products obtained from multi-~
plying the terms in locations 1 and 3,
1 and 4, 2 and 3, 2 and 4.

Now collect terms and check to see if
the result equals the equation at the
end of step B.

If the result does not equal the equation
you must try other combinations of factors
and signs (return to Step C).

If the result does check, we solve for
the X values by setting each expression
equal to 0, and then solving each
equation for X. The result will be the
2 values that will make the original
equation equal 0. You can check these
values by inserting them into the
original equation and checki: to ee
whether your answer is O.
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Now you try to solve the following equation:

2
3" +9Xx -12 =0

]




page 6

Here is tne solution:

9
KT+ 9¥ - 12 =0

e}
(X" + 3X -4) =0

Xz +3Xx -4=20
2

1 2 3 b
X+48ExE-1)=0

-112-
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page 1 Cl Instructions for Study 2 C

The next phase of this instructional program will present the steps necessary to
solve cubic equations. Equations of this kind involve more thanone value for the
unknown X. Your goal is to simplify the given equation into an equation with separate
expressions each containing an X. Each of these expressions is used to attain a
value for X.

Step A

Determine the 4X3 - 20X2 + 24X =0 The highest exponent in the initial
number of ecuation refers to the number of ¥
values for values we are solving for.

X
4 - 20X2+ 24X = Q There are 3 values for X since the

highest exponent in this equation is 3.

Step B 4X(X2 -5X+6) =0 Since the variable X is common to all

the terms of the equation, factor it

F t
actor ou out of the equation.

common
elements
Step C 4X( )( ) =0 Set up your sets of parentheses.
: . 1 2 3 L
iﬁmpllfy XX )X )y =0 Put in locations 1 and 3 factors of
. tio the lst term (X?) of the equation
equation within the parentheses in step B.
1 2 3 L
4X(X 3K 2) =0 Put in locations 2 and 4 factors of

the 3rd term (6) of the equation
within the parentheses in step B.

1 2 3 4
XX - DX - 2)

|1
o

Between the locations go minus or

plus signs. Remember, you need to get
a combination of factors and signs
that will cross multiply to equal

the equation within the parenthesis

in step B.

"
o

(X - Y X - 2) To cross multiply: multiply together
2 the elements in location 1 and 3, 1
X", -2X, -3X, 6 and 4, 2 and 3, and 2 and 4.

AX(X% + (=2x) +(=3K) + 6 = 0 Add these four multiplicative products
together.

4X(X2 -5X+6) =0 Collect these terms and check to see if
the result is the same as the equation
within the parentheses in step B.

If the result does not equal the step
B equation, try other combinations

of factors or signs in the parentheses
(return to the beginning of Step C).
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Step D

Solve for
X
values

Step E

(Optional)

Check
solution

i

0+ 3

0+ 2

r4X = 0
—+X - 3=20
X-2=0
»4X = 0
X=20
> X-3=0
X-3)+3
l, X =3
X-2=0
X -2 +2
X =2
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4(0)3- 200002 + 24¢0) = 0

0-0+0=20

4(3)3 - 20(3)2 + 24(3)

4(27) -~ 2009) +72 =0
180 - 180 + 72 = 0

180 - 180 = 0

4(2)3 - 20(2)% + 24(2)

4(8) - 20(4) + 48 = 0
32 - 80 +48 =0

80 -80 =0

1t
o

]
(=]

If the result equals the step B
equation, solve for the X values by
setting each of the expressions in
step C equal to 0.

Solve each of these equations to get
the three X values.

To check if these are the correct
values, insert each of them into the
original equation and check to see
if your answer is 0.
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Now you try to solve for X in the equation:

3X

3

- 18 x% + 15% = 0

-115-
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Step A

Determine the
number of
values for X

Step B

Factor out
common
elements

Step C
Simplify the
equation

Step D

Solve for
X values
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33X~ - 18X2 + 15X = 0

IX(XZ - 6X + 5) = 0

3x( )( ) =0

1 2 3 4
XE-55E-1)=0
Se—

1 2.3 4
XX ~-55E-1)=0

KK + (~X)+(=5X)+5 = 0

IX(X2 - 6X + 5) = 0

3X=0

X=0

X~5=20
X-5+5=0+5
X=05

X-1=20
X-1)+1=0+1

There are 3 values to solve for,
since 3 is the highest exponent.

Since the variable X is common to all
the terms of the equation, it can
be factored out.

Set up your parentheses.

Put in locations 1 and 3 factcrs of
the 1lst term of the equation within
the parentheses in step B(X?), and in
location 2 and 4 factors of the 3rd
term of the equation within the
parentheses in step B(5). Finally,
put some signs between these locations.
Remember, you need to get a combina-
tion of factors and signs that cross
multiply to equal the equation you're
solving.

Cross multiply to check and see if

the two expressions are the ones

you want. Cross multiply and add
together the four products obtained

from multiplying the elements in locatior
land 2, 1 and 4, 2 and 3, 2 and 4.

Collect terms and check to see if the
result equals the equation in step B.

If the result does not equal the
equation in step B, try other corbina-
tions of factors or signs in the
parentheses (return to the beginning
of Step C).

If the result equals the step B equation
solve for the X values by setting each
of the expressions in step C equal

to 0. Then solving for X in each of
these equations gives us the 3 values
for X that solve the initial equation.
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Now you try to solve for X in the equation:

3 2
2" - 8X" +6Xx =0

=117~
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Here is the solution:

23 - 8x° + 6X = 0
2X(XP - 4X +3) =0

1 2 3 4
28X -3)xX-1 =0

2X(X2 - X - 3K +3) =0

2X =0
X=0
X-3=0
X=3
X-1=20
X=1

~118~
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C, Instructions for Studies 2 and 3

The next phase of this instructional progfhm will present the steps necessary
to solve cubic equations. Equations of this kind involve more than one value for

the unknown X.

Your goal is to simplify the given equation into an equation with

separate expressions each containing an X. Each of these expressions is used to
attain a value for X.

STEP A
Determine the
number of
values for

X

STEP B
Factor out
common
elements

STEP C
Simplify the
equation

3 2

X"+ X5 +2X = 0 The highest exponent in the initial
equation refers to the number of X
values we are solving for.

W% fe2xe0 I :

There are 3 values for X since the highes-
exponent in this equation is 3.

x(3xz +7X+2)=0 " Since the variable X is common to all
the terms of the equation, factor it
out of the equation.

X( 14 ) =0 Set up your sets of parentheses.
1 3
X(3x )(X )=0 Put in locations 1.and 3 factors of the

1st term (3X2) of the equation within
the parentheses fn step B.

1 2 .3 Y
X(3x (X 2)=0 Put in locations 2 and 4 factors of the
: 3rd term (2) of the equation within
the parentheses in step B.
1 - 2.3 4
X(3X+1)(Xx+2)=0 Between the locations go minus or plus
signs. Remember, you need to get a
combination of factors and signs that
will cross multiply to equal the equation
—_— within the parentheses in step B. .
1 2.3 &
X(3X +1)(X +2) =0 To crass multiply: multiply together
S ——_— the elements in location 1 and 3,
3X2. 6X, 1X, 2 1 and 4, 2 and 3, and 2 and 4.

X(3x2 + 6X + 1X +2) = 0 Add these four multiplicative products
together,

x(3x2 +7X+2)=0 Collect these terms and check to see if
the result is the same as the equation
within the parentheses in step B.

If the result does not equal the step B
equation, try other combinations of

factors or signs in the parentheses
(return to the beginning of Step C).
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STEP D X=0

Solve for X X+1=0
values X+220

A+1=0

(33 +1)-1=20-1
X = -1

1/3(3X) = (-1)1/3

X =-1/3

L—> X+2=90

(X+2)-2=0-2
X =22

————

STEP E (optional)
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If the result equals the step B equation,
solve for the X values by setting

each of the expressions in step C

equal to O,

Solve each of these equations to get
the three X values.

Thus, the three values for X in the equati
are: =0

x=-A

X= -2

Check solution 3(03) + 7(0)2 +2(0) =0 To chack 1f these are the correctvalues,

0+0+0=20

insert each of the three values for X
into the original equation and check
to see if your answer is 0.

3D+ 1D R 2 (1) =0
3 (=1/27) + 7(1/9) + (=2/3) = 0

3(2)3 + 7(-2)% + 2(-2) = 0
3(-8) + 7(-2)% + 2(-2) = 0
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Now you try to solve for X in the equation:

2%3 + 9x% + 4X = 0

-121-
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STEP A @/—\ e
Determine the 28+ 9x% + 4x = 0 There are 3 values to solve for,

number of since 3 is the highest exponent.
values for X - .

STEP 8

Factor out X(ZX2 +9X+4) =0 Since the variable X is common to all
common the terms of the equation, it can
elements . be factored out.

STEP C (N )= 0 Set up- your parentheses. = -

Simplify the 1 2 3 4 -

equation X(2X + 1)(x +4) =0 Put in locations 1 and 3 factors of the
I1st term of the equation within the
parentheses in step B (2X2), and in
locationm 2 and 4 factors of the 3rd
term of the equation within the
parentheses in step B (4). Finally, put
some signs between these locations.
Remember,- you need to get a combination
of factors and signs that cross multiply
to equal the equation you're solving.

1 2 3 b
X(2X + 1)(X +4) =0 Cross multiply to check and see if the
Té:'/ two expressions are the ones you want.
X(2X< +8X + 1X +4) =0 Cross multiply and add together the
four products obtained from multiplying
: the elements in location 1 and 2, 1 and 4,
t 2 and 3, and 2 and 4,

X(sz +9X+4) =90 Collect terms and check to see if the
result equals the equation in step B.

If the result does not equal the equation
in step B, try other combinations of

factors or signs in the parentheses
(return to the beginning of Step C).

STEP D

solve for ' [ X=0 If the result equals the step.8 equation,

X val solve for the X values by setting each of
values ~2X +1 =Q the expressions in step C equal to O.

Then solving for X in each of these

(2X +1) -1=0-1 equations gives us the 3 values for X
that solve the initial equation.

(2X) = (-1)% X+4=0 The 3 values for X are:

| X = -k 3| (%K) - 4 = 0-4 X =0

X= <4 X = -4 N
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Now you try to solve for X in the equation:

3% + 10%% + 3K = 0

.




Py -

Here 1s the solution:

w3+ 1008 + 3 =0

X(3x% + 10X + 3) = 0
X(3X + 1)(X + 3) = 0
X(3X2 + 9X + 1X + 3) = 0

-124-




- The next phase of this instructional program wiil present the steps necessary to

solve cubic equations. Equations of this kind involve more than one value for the

C3 Instructions for Study 3 -125- C

unknown X. Your goal is to simplify the given equation into an equation with separate

expressions each containing an X.

for X.

STEP A
Determine the
number of
values for

X

STEP B
Factor out
common
elements

STEP C
Simplify
the
equation

26x3 + 28%% + 8X = 0

262+ 28%% + 8X = 0

X(24X% + 28X + 8) = 0

4X(6X° + 7X +2) = 0

4X( )( ) =0

12 K
4X(3X )(2X ) =0

1 2 3 W
4X(3X 2)(2x 1) =0

1 2 3 4
4X(3X + 2)(X+1)=0

Q
GXAX +2)(X + 1) = 0
~—

6x%, 3%, 4X, 2

4X(6X + IX #4X + 2) = 0

4.1{(6){2 +7X+2) =0

Each of these expressions is used to attain a value

The highest exponent in the initial
equation refers to the number of X
values we are solving for.

There are 3 values for X since the
highest exponent in this equation is 2.

Since the variable X is common to all
the terms of the equation, factor it
out of the equation.

Since there is a highest common factor
greater than 1 common to all the terms

of the equation, this number can also

be factored out of the equation. In this
case that number is 4.

Set up your sets of parentheses.

Put in locations 1 and 3 factors of the
1st term (6X”) of the equation within
the parentheses at the end of Step B.

Put in locations 2 and 4 factors of the
3rd term (2) of the equation within the
parentheses at the end of Step B.

Betw:en the locations go minus or plus
signs. Remember, you need to get a
combination of factors and signs that

will cross multiply to equal the equation
within the parenthesés at the end of Step B

To cross multiply: multiply together the
elements in location 1 and 3, 1 and 4,
2 and 3, and 2 and 4.

Add these four multiplicative products
together.

Collect these terms and check to see if
the result is the same as the equation
within the parentheses in Step B.
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STEP D
Solve for X
values

STEP E
(Optional)
Check
solution

=
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4X = 0

3X+2=0

2+ 1 =0

4X = 0
X=0

3X+2=0
(3X+2)-2=0-2
3X = =2

1/3(3%) = (-2)1/3

X = -2/3

X +1=0
(X+1) -1=0-1
2X = -1

1/2(2%) = (-1)1/2

X=-1/2

24(0) + 28(0) + 8(0) = O

0 + 0 + 0=0

If the result does not equal the Step B
equation, try other combinations of
factors or signs in the parentheses
(return to the beginning of Step C).

If the result equals the Step B equatiom,
solve for the X values by setting each
of the expressions in Step C equal to O.

Solve each of these equations to get the
three X values.

Thus, the three values for X in the equatio
are:

X=0

X = -2/3

X = -1/2

To check if these are the correct values,
insert each of the three X values inte
the origiral equation and check to see if
your answer is 0.

24(-2/3)> + 28(=2/3)% + 8(-2/3) = 0

24(-8/27) + 28(4/9) + 8(-2/3) = 0

24 (-8/27) + 28 (12/27) + 8(-18/27) = 0

26(-1/2)3 + 28(-1/2)% + 8(~1/2) =~ 0

24(-1/8) + 28(1/4) + -8/2 = 0
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Now you try to solve for all X values in the equation:

18X + 42¥% + 12X = 0

, - . —
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Cy

Determine the 183 + 42X" + 12X = 0 There are 3 values to solve for, since

number of
values for X

STEP B 2
Factor out 3X(6X"+14X+4) = 0
common
elements
Step C
Simplify the 3x¢( ) ) =0
equation
1 2° 3 4
3X(2X +4)(3X + 1) =0
1 2 3 [
3X(2X + 4)(3X + 1) = 0
~~——
3x(6x2+2x+12x+4) =0
IX(6X° + L4X + 4) = 0
STEP D
Solve for [3}{ =0
X values X=0
2ZX+4 =0
(2X +4)=4 = 0-4
2X = =4

1/2(2x) = (-4)1/2
X= -2

X+1=0

(3%+1) -1 =0 -1
X=-~1

1/3(3X) = (-1)1/3
X=-1/3

3 is the highest exponent.

Since the variable X is common to all the
terms of the equation, it can be factored
out. Also, a highest common number to
all the terms, 3, can'be factored out.

Set up your parentheses.

Put in locations 1 and 3 factors of the
1lst term of the equation Yithin the
parentheses in step B (6X"), and in
location 2 and 4 factors of the 3rd temrm
of the equation within the parentheses in
Step B (4). Finally, put some signs
between these locations. Remember, you
need to get a combination of factors and
signs that cross multiply to equal the
equation you're solving.

Cross multiply to check and see if the
two expressions are, the ones you want.
Cross multiply and add together the
four products obtained from multiplying
the elements in location 1 and 2, 1 and
4, 2 and 3, and 2 and 4. .

Collect terms and check to see if the
result equals the equation in Step B.

If the result does not equal the equation
in Step B, try other combinations of
factors or signs in the parentheses
(return to the beginning of Step 0.

If the result equals the Step B equationm,
solve for the X values by setting each of
the expressions in Step C equal to 0.
Then solving for X in each of these
equations gives ud the 3 values for X
that solve the initial equationm.

The 3 values for X are:
X=20

X = =2
X = -1/3
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Now you try to solve for all values of X in the equation:

40%° + 34x2 + 6X = 0

eI Sea T T i . -
.»."..u.*»!"’fi\s_«-z..v %, PN -

o S -
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Here is the solution:

40K° + 34X% + 6X = 0

2X(20%% + 17X + 3) = 0

2X(4X + 1) (5x +3) =0
\i_/

2X (20}(2 + 12X +5X +3) =0

2X(20X% + 17X + 3) = 0

2X =0
X=0

4X + 1 =0

(X +1) -1=0-1
4 = -1

1/4(4%) = (-1)1/4

X=-1/4

SX+3=0
(5k+3)-3=0-13
SX=-3

1/5(5X) = (-3)1/5

X = -3/5

JRERINPRY AN




X"+ 6X+5=0

2X3+9X+4X=0

X"+ 5X+4=0

2%x% + 8% - 10 = 0
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STUDY 2

Pretest for Study 2

3+ 7x% +2x =0

3%2 + 3X - 18 = 0

4x3 - 20x% + 24x = 0

3 2

3X7 - 18X + 15X = 0

SREEEE L PO R TR
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| STUDY 2

Posttest for Study 2

Please solve for all possible values of X in the following equations:

5x3 + 16x2 + 3X = 0 P +sx-12=0
| X2 +4X+3=0 23+ 7%% + 3x = 0
b
[}
h
23 - 12x2 + 18X = 0 X2 +6X+8=0
i
|
2%% 44X - 16 = 0 6x3 - 24x% + 20X = 0
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Study 3
Pretest for Study 3

Please solve for all possible values of X in the following equations:

X2+ 6X+5=0 20%> + 34%% + 6X = 0

23+ ox? + 4x =0 3+ 7x% + 2x = 0
3 2 2 -

18%> + 42X + 12X = 0 X2+ 5K+ 4=0
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STUDY 3

Posttest 1: Following Ql Instruction

Please solve for all possible values of X in the following equations:

12%3 + 28x% + 16X = 0 2+ 2+ =0

3

XX +4X+3=0 18%3 + 39%% + 15% = 0

53 + 16X% + 3% = 0 X2 + 6X+ 8 =0
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STUDY 3

Posttest 2: Following C, Instructions

2

a3+ 13x% + 3X = 0 X34+ 3X+2=0

X2 +5K+6=0 305> + 33%% + 9X = 0
3 2 3 2 -

36X3 + 36X% + 8X = 0 33 + 11%% + 6X = 0

Please sclve for all possible values of X in the following equations:
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STUDY 3

Posttest 3: Following C3 Instructions

Please solve for all possible values of X in the following equations:

20X° + 60X + 45X = 0 X2 + 7X + 10 = 0
X2 4+ 9X + 20 = 0 (X3 + 7x% + 3% = 0
5%3 + 12%% + 4X = 0 26x3 + 26x% + 6X = 0
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l STUDY 3
‘ Retention Test

Please solve for all possible values of X in the following equations:

X2+7X+12=0 33+ 8x%2 + 4X = 0
3 2 2 )
163 + 48%% + 20X = 0 x> +8X+16 =0
!
27%3 + 24x% + 12X = 0 33 +5%x% + 2X = 0
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APPENDIX C




Appendix C

The appendix describes the latent class techniques and modified path
analyvsis procedures used in the present investigation. Latent class models are
designed to represent hypotheses about unobserved (latent) variables. The latent
class approach can be used to generate maximum likelihood estimates of expected
cell ferquencies under the assumption that the model being examined is true.

This estimate of any particular response pattern is obtained by computing the
joint probability of the response pattern and the latent class for each latent
class. The joint probabilities, which are computed iteratively, are then summed
across all latent classes and multiplied by the sample size (Goodman, 1974).

This is illustrated by considering two pairs of identical items, A and A'
and B and B'. The general unrestricted latent class model for these items
asserts that:

T —_———
"ijkl = “AA'BB'Xijklt
t=1
where ijkl is the probability of response pattern ijkl (i =1, 2; j = 1, 2;
k=1,2;1=1, 2) and nﬁ'ﬁﬁ'xijm

pattern ijkl and latent class t (t = 1 to T). The joint probability may be

is the joint probability of response

expressed as:

where nxt is the probability of latent class t, ﬂAxit is the conditional

probability that item A will be responded to at level i, given latent class t
A'X BX B'x
and ™ jt? ™ Kt ? and T 1t

Various kinds of restrictions can be imp«sed on the latent class models.

are similarly defined.

For example, the concept of a domain was previcusly mentioned. This indicates
that certain classes of learners ought to perform in similar ways across items.

Latent class models can represent this type of assumption through certain

— -
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restrictions. For instance, for the mastery latent class, one may wish to
assume that masters pass all the items, while in the nonmastery latent class
one might assume failure of all items. These assumptions would be reflected

in the following restrictions:

A LA B TrE'x -1
21 21 21 21
XA BX B
12 12 127 12

where NAX21 is the probability of failing item A given memberhip in latent
class 1 (nonmastery class), and nlez is the probability of passing item A
given membership in latent class 2 (mastery class). The other conditional
response probabilities are similarly defined.

Latent class models are tested by assessing the correspondence between
observed cell frequencies and estimates of expected cell frequencies using the
chi~snuared statistic. Low values of X2 indicate models which provide an
adequate fit to the data. Clifford Clogg (Note 2) has developed a computer

program to carry out the iterative process used to generate maximum likelihood

2
estimates to expected cell frequencies, and which computes the X" value to

test the fit of a model to a data set. Clogg's program was used in the present

investigation.

Goodman's (1973) modified path analysis approach is designed to represent
causal relations among a set of categorical variables. Like the latent class
approach, Goodman path models can be used to generate maximum likelihood esti-
mates of expected cell frequencies under the assumption that the model being
tested is true.

Goodman's models are designed to be analogous to procedures such as
regression and the analysis of variance based on the general inear model. The

Goodman models may be expressed in either a multiplicative or an additive
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form. The additive version which makes use of natural logarithms is intended
to make the models analogous to analysis of variance and regression procedures.

The general modified path analysis model for three variables can be repre-

sented as:

C C AC BC ABC

& =

R 1+5j+3 ]

tE
ij

level K, level 1 as opposed to level 2, when variables A and B are at levels

where

is the natural logarithm of the odds that variable C will be at

i and j respectively, BC is the general mean for variable C expressed in

logarithmic form, BACi is the main effect of variable A, BBC is the main effect

- b

of variable B, and BABC is the AB interaction.

ij

Bcij is a direct function of expected cell frequencies. Maximum likeli-

hood estimates of expected cell frequencies generated under the model being teste

tested are used in computing Bcij'




